
REPORT NUMBER: RDM/WMA11/00/CON/CLA/0313

CLASSIFICATION OF WATER RESOURCES AND DETERMINATION OF THE COMPREHENSIVE RESERVE AND RESOURCE QUALITY OBJECTIVES IN THE MVOTI TO UMZIMKULU WATER MANAGEMENT AREA

Department: Water Affairs REPUBLIC OF SOUTH AFRICA

RfA03_2013

CLASSIFICATION OF WATER RESOURCES AND DETERMINATION OF THE COMPREHENSIVE RESERVE AND RESOURCE QUALITY OBJECTIVES IN THE MVOTI TO UMZIMKULU WMA

DESKTOP ESTUARY ECOCLASSIFICATION AND ECOLOGICAL WATER REQUIREMENT REPORT

Report Number: RDM/WMA11/00/CON/CLA/0313

June 2013

Copyright reserved

No part of this publication may be reproduced in any manner Without full acknowledgement of the source

REFERENCE

This report is to be referred to in bibliographies as:

Department of Water Affairs, South Africa, June 2013. Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to Umzimkulu WMA: Desktop Estuary EcoClassification and Ecological Water Requirement. Prepared by: Rivers for Africa eFlows Consulting (Pty) Ltd.

DOCUMENT INDEX

Index Number	DWA Report Number	Report Title
1	Report Number: RDM/WMA11/00/CON/CLA/0112	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to Umzimkulu WMA: Inception report
2	Report Number: RDM/WMA11/00/CON/CLA/0113	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to Umzimkulu WMA: Status quo assessment, IUA and biophysical node delineation and identification.
3	Report Number: RDM/WMA11/00/CON/CLA/0213	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: River Resource Units and EWR sites
4	Report Number: RDM/WMA11/00/CON/CLA/0313	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Desktop Estuary EcoClassification and EWR
5	Rive	ers EWR report Volumes
5.1	Report Number: RDM/WMA11/00/CON/CLA/0114	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 1: EWR estimates of the River Desktop Biophysical Nodes
5.2	Report Number: RDM/WMA11/00/CON/CLA/0214	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 2: EcoClassification and EWR assessment at the Rapid III level
5.3	Report Number: RDM/WMA11/00/CON/CLA/0314	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 3: EcoClassification and EWR assessment at the Comprehensive and Intermediate levels
5.4	Report Number: RDM/WMA11/00/CON/CLA/0414	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 4: Specialist appendices
6	Report Number: RDM/WMA11/00/CON/CLA/0212	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: BHNR
7	Report Number: RDM/WMA11/00/CON/CLA/0514	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Water Resource Analysis Report
8	Operational Scenari	o and Management Class report volumes

8.1	Report Number: RDM/WMA11/00/CON/CLA/0614	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 1: River Ecological Consequences
8.2	Report Number: RDM/WMA11/00/CON/CLA/0714	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 2: Estuary Ecological Consequences
8.3	Report Number: RDM/WMA11/00/CON/CLA/0814	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 3: Estuary ecological consequences - specialist appendices (available electronically only)
8.4	Report Number: RDM/WMA11/00/CON/CLA/0914	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 4: Economic consequences
8.5	Report Number: RDM/WMA11/00/CON/CLA/1014	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 5: EGSA consequences
8.6	Report Number: RDM/WMA11/00/CON/CLA/1214	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 6: Water quality consequences
8.7	Report Number: RDM/WMA11/00/CON/CLA/1314	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 7: Recommended Management Classes.
9	Report Number: RDM/WMA11/00/CON/CLA/0115	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Stakeholder Report
10	Resource C	Quality Objectives report volumes
10.1	Report Number: RDM/WMA11/00/CON/CLA/0215	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 1: Rivers and Wetlands EcoSpecs and TPCs
10.2	Report Number: RDM/WMA11/00/CON/CLA/0315	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Volume 2: Resource Water Quality Objectives and Groundwater RQOs
11	Report Number: RDM/WMA11/00/CON/CLA/0415	Classification of Water Resources and Determination of the Comprehensive Reserve and Resource Quality Objectives in the Mvoti to UmzimkuluWMA: Main report

DEPARTMENT OF WATER AFFAIRS CHIEF DIRECTORATE: RESOURCE DIRECTED MEASURES

CLASSIFICATION OF WATER RESOURCES AND DETERMINATION OF THE COMPREHENSIVE RESERVE AND RESOURCE QUALITY OBJECTIVES IN THE MVOTI TO UMZIMKULU WMA

DESKTOP ESTUARY ECOCLASSIFICATION AND EWR REPORT

Approved for RFA by:

.....

Delana Louw Project Manager Date

DEPARTMENT OF WATER AFFAIRS (DWA) Approved for DWA by:

.....

Chief Director: Water Ecosystems

Date

AUTHORS

The following members of the study team authored this report:

Specialist	Affiliation	Area of responsibility
		Project coordinator/
Ms L van Niekerk	CSIR, Stellenbosch <u>lvnieker@csir.co.za</u>	hydrodynamics / Report
		preparation
Dr S Taljaard	CSIR, Stellenbosch staljaar@csir.co.za	Water quality
Mr P Huizinga	Private Consultant <u>p.huizing@adept.co.za</u>	Hydrodynamics (advisory role)
Prof G Bate	Nelson Mandela Metropolitan University	Microalgae
Prof J Adams	Nelson Mandela Metropolitan University	Macrophytes
Mr S Weerts	CSIR, Durban sweerts @csir.co.za	Invertebrates and fish
Dr D Allan	Natal Museum	Birds

ACKNOWLEDGEMENTS

The hydrology used in this study was provided by Mr S Mallory, Institute for Water Research (IWR) water resources, and was generated as as part of a WRC Project K5/2187: The resilience of South Africa's estuaries to future water resource development based on a provisional ecological classification of these systems. The hydrology was reviewed and refined by WRP Consulting Engineers (Pty) Ltd.

Comments received from DWA: Tovho Nyamande Mmaphefo Twala

Other comments: Bill Pfaff

REPORT SCHEDULE

Version	Date
First draft	June 2013
Second draft	October 2013
Third draft	November 2013

EXECUTIVE SUMMARY

INTRODUCTION

The objective of this task was to describe and document the status quo of the 64 estuaries occurring within the Mvoti to Umzimkulu Water Management Area (WMA). This requires that the status quo (Present Ecological Status), importance, and hotspots be identified for all the systems in the WMA. It also requires that the EWRs be addressed for the all the estuaries. Since these processes cannot be addressed at a detailed level for all the systems within the time frames of this study, using the above principles, a process of prioritization had to be followed to determine which of the 64 estuaries must be addressed at higher than desktop levels. The output of this study is therefore that a desktop level of information on EcoClassification is available for all estuaries; including hotspots identified and levels of EWR assessment determined for each estuary. The output of this task will serve as a strategic tool that can guide current and future monitoring requirements, and ultimately EWR determinations.

ESTUARY HEALTH

The assessment clearly shows the footprint of urbanisation on the estuaries in Mvoti to UmzimkuluWater Management Area (WMA) (Table 1). In most cases inflowing-hydrology is still in relatively good condition, with the exception of the urbanised systems where Waste Water Treatment Works (WWTWs) have elevated base flows significantly. The hydrodynamics (Mouth State) and salinity distributions therefore show a similar pattern.

In contrast to the hydrology, the water quality in a large number of estuaries in this WMA has been modified significantly. This is largely attributed to diffuse agricultural runoff in rural areas (e.g. fertilizers, herbicides and pesticides) and contaminated stormwater runoff from urban development (e.g. nutrients and toxic substances). In some estuaries, water quality has been compromised by point source WWTWs' effluent being discharged into estuaries or into rivers near the head of estuaries. With the exception of the larger fast-flowing estuaries, namely the Mtamvuna, uMkhomazi, uMngeni and Umzimkulu, most systems along this stretch of coast are relatively small with a very high vulnerability to increased nutrient loading. It should also be noted that while the overall water quality condition score for Durban Bay was relatively good this is largely as a result of tidal flushing of the lower reaches of this system. Important estuarine habitats (mangroves, mud and sand banks) in this Bay occur in the upper reaches however, and these are subject to reduced flushing and direct impacts of very poor water quality inflows from surround urban areas. In addition to the historic and ongoing physical alteration and destruction of habitat due to port development, water quality in these regions of the Bay significantly threatens ecological integrity.

Generally urbanisation led to significant habitat modification. Road and rail infrastructure has to a greater or lesser degree impacted every system along this stretch of coast whereby most estuaries in the Mvoti to UmzimkuluWMA have one or two large bridges across them. Bridge foundations and abutments, road and rail berms have led to infilling of systems and consequent habitat destruction, or development across floodplain and channel stabilisation has impacted natural flow patterns which have resulted in localised scour and deposition. The Port of Durban Bay also stands out as a highly transformed estuary as a result of port development. Sugar cane farming along the banks of a large number of systems has led to infilling of floodplains and general constriction of tidal flows as well as large scale loss of marginal vegetation and natural estuarine buffers.

Table 1 Pre	Table 1 Present Ecological State of the estuaries of Mvoti to UmzimkuluWMA.												
IUA Code	Name	Hydrology	Hydrodynamics	Water Quality	Physical habitat	Habitat Score	Microalgae	Macrophytes	Invertebrates	Fish	Birds	Biological Score	PES
T40E-05869	Mtamvuna	В	Α	Α	В	В	В	В	С	С	В	В	В
T40F-05953	Zolwane	Α	Α	Α	Α	Α	Α	В	В	С	В	В	В
T40F-05923	Sandlundlu	Α	Α	В	С	В	В	С	D	Е	D	D	С
T40F-05928	Ku-Boboyi	Α	В	В	В	В	В	В	В	С	С	В	В
T40F-05879	Tongazi	Α	Α	В	В	В	В	С	D	С	С	С	В
T40F-05884	Kandandhlovu	Α	В	С	С	В	В	С	D	С	С	С	В
T40F-05770	Mpenjati	Α	Α	В	D	В	В	С	D	D	В	С	В
T40F-05839	Umhlangankulu	Α	Α	D	D	С	С	D	Е	D	С	D	С
T40F-05820	Kaba	Α	Α	С	С	В	В	С	С	D	С	С	С
T40F-05666	Mbizana	Α	Α	В	С	В	В	С	С	С	В	В	В
T40G-05773	Mvutshini	Α	В	С	В	В	В	С	С	С	С	С	В
T40G-05722	Bilanhlolo	Α	Α	С	D	В	С	D	D	D	D	D	С
T40G-05768	Uvuzana	Α	Α	С	С	В	В	С	D	D	D	С	С
T40G-05739	Kongweni	Е	Е	D	D	D	Е	Е	D	D	D	D	D
T40G-05616	Vungu	В	Α	С	В	В	С	В	С	С	С	С	В
T40G-05644	Mhlangeni	В	В	С	D	С	С	D	D	D	С	С	С
T40G-05577	Zotsha*	В	С	С	В	В	В	С	С	В	В	В	В
T40G-05573	Boboyi	В	Α	В	С	В	В	С	С	С	С	С	В
T40G-05611	Mbango	D	D	D	D	D	D	Ε	F	F	D	Е	Е
T52M-05547	Umzimkulu	В	В	С	С	В	В	В	С	В	В	В	В
U80A-05470	uMthente (Mtentweni)	В	В	В	D	В	В	D	С	D	С	С	С
U80A-05527	Mhlangamkulu	D	С	В	С	С	С	D	С	D	С	С	С
U80A-05461	Damba	D	D	В	D	С	С	С	С	D	С	С	С
U80A-05496	Koshwana	D	С	С	D	С	С	С	С	D	С	С	С
U80A-05456	Intshambili	D	С	С	С	С	С	С	С	С	С	С	С
U80C-05448	Mzumbe	В	В	С	D	С	С	Е	D	D	Е	D	С
U80D-05375	Mhlabatshane	Α	Α	В	С	В	В	D	С	С	С	С	В
U80D-05361	Mhlungwa	Α	Α	В	Ε	В	В	Ε	D	D	С	С	С
U80D-05374	Mfazazana	В	С	С	D	С	С	D	D	D	С	С	С
U80D-05345	Kwa-Makosi	В	В	В	С	В	В	С	С	С	С	С	В
U80D-05327	Mnamfu	С	С	С	С	С	С	С	D	D	С	С	С
U80F-05270	Mtwalume	В	С	С	С	С	С	С	D	D	D	С	С
U80G-05302	Mvuzi	В	С	С	D	С	С	С	С	С	С	С	С
U80G-05097	Fafa	С	В	С	D	С	С	D	D	D	D	С	С
U80H-05229	Mdesingane	Α	Α	С	D	В	С	Е	Е	Е	D	D	С
U80H-05202	Sezela	В	В	С	D	С	С	С	D	D	D	С	С
U80H-05186	Mkumbane	В	В	С	С	В	С	D	D	D	D	D	С
U80H-05109	uMuziwezinto (Mzinto)	С	В	С	D	С	С	D	D	D	D	D	С
U80H-05120	Nkomba	Α	Α	С	С	В	С	С	В	В	С	В	В
U80H-05120	Mzimayi	С	В	С	С	С	С	С	D	С	С	С	С
U80K-04952	Mpambanyoni	В	Α	В	D	В	В	D	D	D	D	D	С

Table 1 Present Ecological State of the estuaries of Mvoti to UmzimkuluWMA

IUA Code	Name	Hydrology	Hydrodynamics	Water Quality	Physical habitat	Habitat Score	Microalgae	Macrophytes	Invertebrates	Fish	Birds	Biological Score	PES
U80L-05020	Mahlongwa	В	Α	В	D	В	В	D	С	D	D	С	С
U80L-05056	Mahlongwane	В	Α	С	D	В	С	D	В	С	С	С	С
U10M-04746	uMkhomazi	С	Α	С	D	С	С	D	С	D	D	С	С
U70E-05010	Ngane	В	В	С	D	С	С	D	D	D	D	D	С
U70E-04974	Umgababa	С	В	В	С	В	В	D	D	D	В	С	С
U70E-04942	Msimbazi	Α	Α	В	С	В	В	С	В	С	В	В	В
U70D-04905	Lovu	D	С	С	D	D	С	D	С	С	С	С	С
U70F-04893	Little aManzimtoti*	D	F	Е	В	D	F	D	F	F	D	Е	Е
U70F-04845	aManzimtoti	С	С	Ε	D	D	D	Е	F	F	Ε	Е	D
U60E-04792	Mbokodweni*	С	Е	Е	D	D	Е	Е	F	Е	F	F	Е
U60E-04827	Sipingo*	F	F	F	F	F	F	Е	F	F	F	F	F
U60F-04684	Durban Bay	F	Α	В	F	D	В	F	F	F	F	Е	Е
U20M-04543	uMngeni	D	В	Е	Е	D	D	F	F	F	Е	Е	Е
U30B-04498	Mhlanga	D	Е	D	D	D	D	С	Е	E	D	D	D
U30B-04475	uMdloti	В	С	Ε	С	С	F	Ε	F	Е	F	Ε	D
U30D-04315	uThongathi	Α	Α	F	D	С	С	Е	Е	Е	F	Е	D
U30E-04207	Mhlali	В	В	С	D	С	С	D	С	D	D	С	С
U30E-04256	Bob's Stream	Α	Α	С	D	В	В	С	В	В	С	В	В
U30E-04256	Seteni	Α	Α	В	D	В	В	С	В	В	С	В	В
U40J-03998	Mvoti	С	В	Е	D	С	D	D	F	D	F	Е	D
U50A-04141	Mdlotane	Α	Α	В	В	В	В	В	В	С	В	В	В
U50A-04021	Nonoti	В	Α	D	С	В	С	D	D	F	D	D	С
U50A-04018	Zinkwasi	Α	Α	В	С	В	В	С	В	В	D	С	В

*Determined with an Ecological Water Requirement study

**Mvoti based on historical EFR flow information

Catchments of estuaries in Tribal Trust areas are also subjected to increased poor agricultural practise, overstocking and increased sediment loads contributing to sedimentation in estuaries.

Macrophytes, in most cases, also reflected the effect of urbanisation, with a significant number of systems showing signs of severe degradation of floodplain vegetation. The effect of nutrient enrichment was clearly evident in reed encroachment in a number of systems. In most cases there was also a significant loss of habitat due to the presence of bridge abutments and berms.

Increased stormwater and nutrient inputs from wastewater treatment have caused eutrophication. Emergent species thrive under these conditions and invasive aquatic macrophytes such as water hyacinth (Eicchornia crassipes) and water cabbage (Pistia stratiotes) outcompete indigenous plants. Disturbed floodplain areas and riparian zones have been invaded by Brazilian pepper tree (Schinus terebinthifolia) and Lantana camara. In many areas, drains have been used to dry out aquatic habitats in order to cultivate the floodplain. Overall, this has resulted in more woody vegetation, encroachment by terrestrial vegetation and a loss of aquatic habitat. Reduction in freshwater inflow to estuaries and an increase in the frequency and duration of closed mouth conditions are also threats. Microalgae have responded positively to increased nutrient loading and concomitant increase in growth of reed habitat, but these effects were somewhat buffered by the fact that the estuaries were fast flowing in their open state.

Alteration and destruction of habitat has resulted in impacts to estuarine invertebrate communities in the systems in the study areas. These have arisen mostly due to development around (and in some case over) estuarine systems. Rail and road infrastructure, urban and sub-urban development has resulted in a loss of reed banks and soft sediment habitat as well as volume of estuarine basins. Changes in hydrology are likely to have had impacts, especially to marine invertebrates, both though reduced connectivity (increased closure and therefore reduced opportunity to recruit into estuaries) and through changes to the salinity regimes in some systems. The alien invasive snail Tarebia granifera has established in many systems and proliferates at the expense of indigenous gastropods. Although unstudied in South Africa, ecosystem impacts are highly likely to occur as a result of the proliferation of this alien species. Little is known of populations of several important invertebrates, such as the sandprawnCallichirus kraussi. Water quality is likely to have played a role in impacting invertebrates in many systems, and certainly to have done so in most estuaries in densely populated urban areas. Small TOCEs that are predominantly closed are especially prone to water quality impacts. Most of these systems exhibit some natural tendency towards depressed oxygen levels in deeper water and this in exacerbated by the influence of increased nutrient input from surrounding land use and WWTWs.

Fish communities have responded to changes in hydrology in some systems because they are sensitive to changes in mouth conditions. Most, if not all of the systems in the study area have experienced loss of estuarine habitat and loss of natural buffer on their perimeters and inflowing rivers. Critical habitat has been lost in some cases, which has resulted in marked reductions in fish diversity and nursery function. In this regard the loss of submerged aquatic vegetation, especially Zostera capensis (Sandlundlu, Umgababa, Sipingo, Durban Bay, and probably others) has undoubtedly played a significant role. In some systems, especially those in high density urban areas and those subject to inflow from WWTWs, water quality is increasing becoming an issue. Fish kills have occurred in recent years in several estuaries in the eThekwini Municipal area (including Durban Bay) and in recent months north of Durban in the Mdlotane. These kills have been related to eutrophication and/or low oxygen events, probably triggered by waste water flows (due to infrastructure failure and/or overloading). In some cases trophic impacts are likely to have manifest with favoured prey items (e.g. sandprawn Callichirus kraussi) either lost or reduced in some systems due to habitat loss, modification or water quality impacts.

Birds are very sensitive to human disturbance with most systems in urban areas having suppressed numbers. This was further exacerbated in some systems by a reduction in food availability and suitable habitat.

RECOMMENDED ECOLOGICAL CATEGORY

The Recommended Ecological Category (REC) represents the level of protection assigned to an estuary. The first step is to determine the 'minimum' EC, based on its PES. The relationship between Estuary Health Index (EHI) Score, PES and minimum REC is set out in Table 2.

EHI score	PES	Description	Minimum EC
91 – 100	А	Unmodified, natural	А
76 – 90	В	Largely natural with few modifications	В
61 – 75	С	Moderately modified	С
41 – 60	D	Largely modified	D
21 – 40	Е	Highly degraded	D
0-20	F	Extremely degraded	D

Table 2 Relationship between the EHI, PES and minimum REC.

The PES sets the minimum REC. The degree to which the REC needs to be elevated above the PES depends on the level of importance and level of protection or desired protection of a particular estuary (Table 3).

Table 3Estuary protection status and importance, and the basis for assigning a
recommended ecological reserve category (modified from DWA 2008).

Protection status and importance	REC	Policy basis				
Protected area	A or BAS*	Protected and desired protected areas should be restored to and maintained in the best possible state				
Desired Protected Area	A OI DAG	of health				
Extremely important (Ranked as 1)	PES + 1, min B	Highly important estuaries should be in an A or B category				
Very Important (Ranked as 2)	PES + 1, min C	Important estuaries should be in an A, B or C category				
Of low to average importance (Ranked as 3-1)	PES, min D	Estuaries to remain in a D category				

* BAS = Best Attainable State

The Recommended Ecological Category for the Mvoti to Umzimkulu WMA estuaries is listed in Table 4.

Table 4The Recommended Ecological Categorybased on their importance for the
estuaries of the Mvoti to UmzimkuluWMA.

Estuary	Conser-	National	Region	al biodiv	ersity		PES	REC
	vation	Biodiversity	Macro- phytes	Fish	Birds	Overall		
Mtamvuna	5	4	3	4	2	5	В	A or BAS
Zolwane	1	1		3		3	В	В
Sandlundlu	1	2	1	3		3	С	С
Ku-boboyi	1	1		2		2	В	В
Tongazi	1	2		3		3	В	В
Kandandhlovu	1	2	3	3		3	В	В
Mpenjati	5	3	1	3	1	5	В	A or BAS
Umhlangankulu	1	3	2	3		3	С	С
Kaba	1	2	1	3		3	С	С
Mbizana	1	3		3	2	3	В	В

		Impo	rtance(rate	d 1- 5)				
Estuary	0	Netterral	al biodiv	I biodiversity			REC	
	Conser- vation	National Biodiversity	Macro- phytes	Fish	Birds	Overall		
Mvutshini	1	1		3		3	В	В
Bilanhlolo	1	3	2	3		3	С	С
Uvuzana	1	1		3		3	С	C
Kongweni	1	2	2	3		3	D	D
Vungu	1	2		3		3	В	В
Mhlangeni	1	2	1	3		3	С	С
Zotsha	5	3		3		5	В	A/B or BAS
Boboyi	1	2		3		3	В	В
Mbango	1	2		3		3	Е	D
Umzimkulu	5	4	5	3	1	5	В	A/B or BAS
uMthente	1	3		3		3	С	С
Mhlangamkulu	1	1	4	3		4	С	С
Damba	5	2	3	3		5	С	A/B or BAS
Koshwana	5	2		3		5	С	A/B or BAS
Intshambili	5	2	1	3	1	5	С	A/B or BAS
Mzumbe	1	3		3	1	3	С	С
Mhlabatshane	5	2	3	3		5	В	A/B or BAS
Mhlungwa	1	2	3	3		3	С	С
Mfazazana	5	3		3		5	С	A/B or BAS
Kwa-Makosi	5	3	1	3		5	В	A/B or BAS
Mnamfu	1	2		3		3	С	С
Mtwalume	1	3		3	1	3	С	С
Mvuzi	1	2		3		3	С	С
Fafa	1	4	3	4	1	4	С	С
Mdesingane	1	1	2	3		3	С	С
Sezela	1	3		3	1	3	С	С
Mkumbane	1	2		3		3	С	С
uMuziwezinto	1	3		3		3	С	С
Nkomba	1	1		1		1	В	В
Mzimayi	1	2		3		3	С	С
Mpambanyoni	1	2		3		3	С	С
Mahlongwa	5	2		3		5	С	A/B or BAS
Mahlongwana	5	3	4	3		5	С	A/B or BAS

	Importance(rated 1- 5)							
Estuary	Conser- National		Region	al biodiv	ersity		PES	REC
	vation	Biodiversity	Macro- phytes	Fish	Birds	Overall		
uMkhomazi	5	4	5	4	3	5	С	В
Ngane	1	2		3		3	С	С
Umgababa	5	3	4	4		5	С	A/B or BAS
Msimbazi	5	3	1	3	2	5	В	A/B or BAS
Lovu	5	3		3	1	5	С	A/B or BAS
Little aManzimtoti	1	2		3		3	Е	D
aManzimtoti	1	3		3	1	3	D	D
Mbokodweni	1	3		3		3	Е	D
Sipingo	1	3	5	3	1	5	F	E
Durban Bay	5	5	5	4	5	5	Е	D
uMngeni	5	4	5	4	4	5	Е	D
Mhlanga	5	4	1	4	2	5	D	B*
uMdloti	1	4	3	4	2	4	D	C *
uThongathi	1	4		3	2	4	D	D*
Mhlali	5	4	2	4	3	5	С	В
Bob' Stream	1	1		1		1	В	В
Seteni	1	2		3		3	В	В
Mvoti	5	3		3	3	5	D	D
Mdlotane	5	4	5	4	1	5	В	A/B or BAS
Nonoti	1	3	3	3		3	С	В
Zinkwasi	5	4	5	3	2	5	В	A/B or BAS

PRIORITY AREAS – HOTSPOTS

Hotspots (priority areas with overall importance) are identified by comparing (or overlaying) Integrated Environmental Importance with Water Resource Use Importance. In the context used here, a hotspot represents an estuary with a high Integrated Environmental Importance which could be under threat due to its importance for water resource use. These hotspots usually represent areas which are already stressed or will be stressed in future. This assessment can therefore guide decision-making with regard to which areas are in need of detailed monitoring and EWR studies. Following the process described above the thirteen estuaries standout out as hotspots (see Table 5 below).

NAME	PES	Ecological Importance (rated 1- 5)	Socio- Cultural Importance (rated 1 - 5)	Water Resource Utilisation (rated 0 - 4)	EWR Status
Kandandhlovu	В	2	2.25	3	Potential focus
Vungu	В	2	2.82	3	EWR done
Zotsha	В	5	2.07	3	EWR done
uMkhomazi	С	5	2.82	4	The focus of this study
Umgababa	С	5	2.65	3	Potential focus
Sipingo	F	3	1.65	3	Diversions of catchment for airport development
Durban Bay	E	5	2.79	4	Port, non-flow related Issues
uMngeni	E	5	3.82	4	EWR done
Mhlanga	D	5	3.25	4	EWR done
uMdloti	D	4	2.72	4	EWR done
uThongathi	D	4	2.25	4	EWR done
Mhlali	С	5	1.39	3	Potential focus
Mvoti	D	5	1.32	4	The focus of this study

Table 5	Mvoti to Umzimkulu WMA Estuar	y hotspots with a 4 rating.
---------	-------------------------------	-----------------------------

Of these thirteen systems, six (the Vungu, Zotsha, uMngeni, Mhlanga, uMdloti and uThongathi estuaries) have been evaluated as part of previous EWR studies. Durban Bay and the Isipingo estuary are in a very poor condition as a result of major infrastructure developments (port and airport development respectively). It is recommended that remedial action be taken to improve their health status to a D Category preferably via the implementation of the Estuary Management Plans currently being developed under the National Environmental Management: Integrated Coastal Management Act (No. 24 of 2008). They are not however seen as top-priority systems for EWR studies in the short term.

Existing and future water resourcedevelopments on the Mvoti and uMkhomazi estuaries are driving their selection as the focus areas for the estuaryassessments. They are presently designated for Intermediate EWR level studies. However, there is some concern that the Mvoti Estuary may already be in an E Category due to water resource development, poor water quality and sand-mining. While this decline in health needs to be addressed it may be possible to identify the required actions in a rapid-level assessment and rather invest the resources (e.g. field investigations) available to the remaining hotspots identified.

Of the remaining estuaries (Mhlali, Umgababa and Kandandhlovu), the Mhlali and Umgababa are deemed the more ecologically important. It is therefore recommended that some of the resources of this study be directed towards these two systems, with the Umgababa the most likely study area for a Rapid EWR assessment. Table 6provides a list of the estuaries that are recommeded for futher EWR investigations as part of this study.

Table 6Estuaries recommended for further EWR studies.

Estuary	EWR level
Mvoti	Intermediate
uMkhomazi	Intermediate
Mhlali/ Umgababa	Rapid

All of the estuaries listed in Table 7 should be prioritized for monitoring of both abiotic (water levels, inflow, water quality) and biological aspects (microalgae, macrophytes, invertebrates, fish and birds).

Note:

The degree to which this Mvoti to Umzimkulu WMA flow requirement study can address the above listed hotspots is seriously hampered by the lack of long-term monitoring data (e.g. 5 to 10 years of continuous river inflow and water level data) available in the study area. Without the supporting information, critical aspects such as river flow-ranges that determine estuary mouth state and related water quality conditions cannot be resolved with any degree of confidence.

Therefore, while all estuaries in the catchment are deemed ecologically and socially significant, and sensitive to water resources development, not all of them are under the same degree of pressure. The relevant government departments are therefore strongly urged to invest in the longterm monitoring programmes required to enable higher-level confidence EWR studies on the systems listed above.

EWR AND RECOMMENDATIONS

Of the 64 estuaries occurring in the WMA, 30% (19 systems) had significant flow related pressures on them, while 78% (50 estuaries) were under significant water quality pressure (Table7). More than 90% (58 estuaries) had under gone significant habitat destruction. All of the estuaries could benefit from some remedial actions and more proactive management of the main vectors of change.

In some of the systems additional water resource development would be possible, as long as the baseflows (low flow regime) are maintained, e.g. the inflowing river can be targeted for off-channel development or runoff river abstraction. The majority of the estuarine catchments in the region are small and linked to temporarily open/closed estuaries that require a high percentage of the natural runoff to maintain their required condition. Any increase or decrease in runoff to this type of system rapidly leads to changes in mouth state and related ecological degradation.

The majority of the estuaries in the WMA close from time to time and are therefore very sensitive to nutrient loading from the catchment or immediate surrounding environment. The assessment of nutrient discharge into estuaries from WWTWs should consider the impact on the receiving environment rather than relying on adherence to permitted discharge levels. In the case of estuaries it appears that either general or special standards are applied to the waste water stream and the impact of the associated nutrients and any organic material on the receiving environment in the estuary appears not to be considered. The small estuaries of the Mvoti to Umzimkulu WMA, during periods of closure, will retain and accumulate nutrients with consequent impacts on water quality, the microalgae and macrophytes, and with cascading ripple effects on all other trophic levels. Therefore neither general nor special standards are sufficient to prevent a deterioration in

overall estuarine health in intermittently open estuaries and the application of a receiving water quality evaluation is advocated when assessing the impacts of discharges on these systems. It is recommended that consideration should be given to the appropriateness of using intermittently open estuaries as conduits for waste water.

Table 7Estuaries EWR and recommendations.

ESTUARY	nMAR ^{*1}	pMAR ^{*2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION
Mtamvuna	275.19	239.49	В	A or BAS	5				5-10%	Flow modification, water quality, some habitat destruction
Zolwane	2.19	2.31	В	В	3					
Sandlundlu	5.07	5.00	С	С	3			х		
Ku-Boboyi	1.00	0.99	В	В	2					
Tongazi	7.00	7.23	В	В	3		х	х		
Kandandhlovu	1.53	1.60	В	В	3		х	х		
Mpenjati	23.61	23.55	В	A or BAS	5		x	х		Water quality, habitat destruction
Umhlangankulu	2.87	2.87	С	С	3		х	Х		
Kaba	3.15	3.07	С	С	3		х	Х		
Mbizana	36.30	35.52	В	В	3			Х	<5%	
Mvutshini	1.66	1.63	В	В	3		х	Х		
Bilanhlolo	5.02	4.98	С	С	3		х	Х		
Uvuzana	1.05	1.05	С	С	3		х	Х		
Kongweni	1.95	2.95	D	D	3	Х	х	х		
Vungu	27.79	28.88	В	В	3		х			
Mhlangeni	9.29	9.56	С	С	3		х	х		
Zotsha	15.74	16.25	В	A/B or BAS	5		x	х		Water quality, habitat destruction
Boboyi	8.25	8.03	В	В	3		х	Х		

ESTUARY	nMAR ^{*1}	pMAR ^{*2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION
Mbango	3.00	7.30	Е	D	3	х	х	х		Flow modification, very poor water quality, severe habitat destruction
Umzimkulu	1452.49	1199.50	В	A/B or BAS	5				5-10%	Poor water quality, habitat destruction, medium-high fishing pressure
uMthente	12.07	11.14	С	С	3			х		
Mhlangamkulu	2.06	1.73	С	С	4	х		х		
Damba	4.56	3.85	С	A/B or BAS	5	х		x		Flow modification, habitat destruction
Koshwana	2.06	1.96	С	A/B or BAS	5	х	х	x		Flow modification, habitat destruction
Intshambili	6.48	4.86	С	A/B or BAS	5	х	x	x		Flow modification, poor water quality, some habitat destruction
Mzumbe	58.53	53.74	С	С	3		х	х	<5%	
Mhlabatshane	6.46	6 <i>.4</i> 8	В	A/B or BAS	5			х		Significant flow modification, some habitat destruction
Mhlungwa	5.78	5.67	С	С	3		х	х		
Mfazazana	2.77	2.57	С	A/B or BAS	5		х	х		Flow modification, poor water quality, habitat destruction
Kwa-Makosi	3.23	3.03	В	A/B or BAS	5			х		Some habitat destruction
Mnamfu	3.08	2.88	С	С	3		х	х		
Mtwalume	57.60	42.78	С	С	3		х	х	<5%	
Mvuzi	1.65	1.55	С	С	3		х	х		
Fafa	46.45	37.64	С	С	4	Х	Х	х	<5%	
Mdesingane	2.02	2.02	С	С	3		Х	Х		

ESTUARY	nMAR ^{*1}	pMAR ^{*2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION	
Sezela	3.92	3.67	С	С	3		х	х			
Mkumbane	3.79	3.54	С	С	3		Х	x			
uMuziwezinto	23.17	20.09	С	С	3	Х	х	х			
Nkomba	0.69	0.69	В	В	1		х	х			
Mzimayi	6.15	4.95	С	С	3	Х	х	х			
Mpambanyoni	60.06	54.94	С	С	3		х	х	<5%		
Mahlongwa	13.76	13.18	С	A/B or BAS	5		х	х		Medium fishing pressure, poor water quality, habitat destruction	
Mahlongwane	2.69	2.93	С	A/B or BAS	5		х	x		Poor water quality, significant habitat destruction	
uMkhomazi	1077.74	926.05	С	В	5	х	х	x	5-10%	Significant flow modification, poor water quality, habitat destruction	
Ngane	3.83	4.30	С	С	3		х	х			
Umgababa	10.56	9.58	C	A/B or BAS	5	х		x		Flow modification, poor water quality, habitat destruction	
Msimbazi	10.04	10.34	В	A/B or BAS	5		х	x		Habitat destruction	
Lovu	105.84	73.46	С	A/B or BAS	5	х	х	x		Significant flow modification, poor water quality, habitat destruction	
Little aManzimtoti	2.84	6.62	E	D	3	х	х	х		Significant flow modification, poor water quality, habitat destruction	
aManzimtoti	5.30	6.75	D	D	3	Х	х	х			
Mbokodweni	31.52	53.54	E	D	3	х		x		Very significant flow modification, very poor water quality, severe habitat destruction (restoration of the existing mouth and lower reaches of the estuary required).	
Sipingo	89.85	9.48	F	E	5	Х	Х	х		Very significant flow modification, very poor water quality,	

ESTUARY	nMAR ^{*1}	pMAR ^{*2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION	
										severe habitat destruction	
Durban Bay	36.33	63.44	E	D	5	x	х	х		High fishing pressure, significant flow reduction, poor water quality, severe habitat destruction (port development), trophic impacts	
uMngeni	671.30	262.68	E	D	5	x	х	х		Significant flow modification, very poor water quality, severe habitat destruction	
Mhlanga	13.34	22.33	D	В*	5	x	x	х		Significant flow modification, poor water quality, habitat destruction	
uMdloti	85.78	71.87	D	C*	4		х	х		Flow modification, poor water quality, habitat destruction	
uThongathi	70.77	71.16	D	D*	4		х	х		Very poor water quality, severe habitat destruction	
Mhlali	56.26	54.22	С	В	5		х	х	<5%	Poor water quality, habitat destruction	
Bob's Stream	0.53	0.53	В	В	1		х	х			
Seteni	1.42	1.42	В	В	3		х	х			
Mvoti	420.00	314.00	D	D	5		х	х	<5%		
Mdlotane	6.04	5.85	В	A/B or BAS	5		x			Water quality, some habitat destruction	
Nonoti	36.24	34.74	С	В	3		х	х	<5%	Poor water quality, some habitat destruction	
Zinkwasi	14.49	14.04	В	A/B or BAS	5		x	х		Poor water quality, some habitat destruction	

*1 - nMAR: Natural MAR

*2 - pMAR: Present day MAR

TABLE OF CONTENTS

1	IN	TRODUCTION	1-1
	1.1	BACKGROUND	. 1-1
	1.2	STUDY AREA OVERVIEW	. 1-1
	1.3	ASSUMPTIONS AND LIMITATIONS FOR THIS STUDY	1-2
	1.4	REPORT STRUCTURE	1-3
2	ME	ETHOD	2-1
	2.1	DESKTOP ESTUARY ASSESSMENT APPROACH	2-1
	2.2	LOCATION AND DELINEATION OF MVOTI TO UMZIMKULU WMA ESTUARIES	2-2
	2.3	PRESENT ECOLOGICAL STATE	
	2.4	RECOMMENDED ECOLOGICAL CATEGORY	
	2.5	INTEGRATED ENVIRONMENTAL IMPORTANCE	
	2.5		
	-	5.2 Socio-Cultural Importance	
		5.3 Integrated Environmental Importance Assessment	
	2.6	WATER RESOURCE USE IMPORTANCE	
	2.7	PRIORITY ESTUARIES – HOTSPOTS	
	2.8	DEFINITION OF CONFIDENCE LEVELS	
3		ASELINE DESCRIPTION AND HEALTH ASSESSMENT	
	3.1	PRESENT ECOLOGICAL STATE (PES)	
4			
	4.1	CONSERVATION IMPORTANCE OF THE Mvoti to UMZIMKULU WMA ESTUARIES	-
	4.2		
	4.2 4.3	2.1 National Importance rating RECOMMENDED ECOLOGICAL CATEGORY	
5		CIO-CULTURAL IMPORTANCE	
5 6		ATER RESOURCE USE IMPORTANCE	-
7		RIORITY ESTUARIES – HOTSPOTS	
8		VR RECOMMENDATIONS	
Ŭ	8.1	EWR RECOMMENDATIONS	
	••••	ESTUARY LONG-TERM MONITORING REQUIREMENTS IN SUPPORT OF HIGH	
		EL EWR STUDIES	
9		EFERENCES	
1		APPENDIX A. LOCATION OF THE ESTUARIES OF THE MVOTI TO UMZIMKULU W	MA
		10.1	
1	1	APPENDIX B. DETAILED METHOD AND SCORES FOR INDIVIDUAL ESTUA	٨RY
С	OMP	ONENTS 1	1.1
	11.1	HYDROLOGY	11.1
	11.	.1.1 Hydrological modelling approach	11.1
	11	.1.2 The water resources yield model	
	11	.1.3 WRSM2000	11.1
	11	.1.4 The Water Resources Modelling Platform	11.2
		.1.5 Summary of the changes in the hydrological components that drive condition in	
	Μı	voti to Umzimkulu WMA estuaries	
	11.2		
	11.3		
	11.4	WATER QUALITY	11.7

	11.4.1	Salinity	. 11.7
	11.4.2	Other water quality parameters	
1		ACROPHYTES	
	11.5.1	Macrophyte groups	-
	11.5.2	Baseline description: Species diversity, richness and rarity	
	11.5.3	Factors affecting the abundance of different macrophytes groups	
	11.5.4	Summary of the macrophytes condition in Mvoti to Umzimkulu WMA	
1	1.6 MIC	CROALGAE	
	11.6.1	Microalgae groups	
	11.6.2	Description of factors influencing microalgae	. 11.1
	11.6.3	Summary of the microalgae condition in Mvoti to Umzimkulu WMA	
1	1.7 ES	TUARINE INVERTEBRATE FAUNA	
	11.7.1	Invertebrate groups	. 11.4
	11.7.2	Baseline description	. 11.5
	11.7.3	Factors affecting the invertebrate fauna	. 11.5
	11.7.4	Summary of the estuarine invertebrate condition in Mvoti to Umzimkulu WMA	. 11.6
1	1.8 FIS	SH	. 11.8
	11.8.1	Fish groups	. 11.8
	11.8.2	Baseline description	. 11.8
	11.8.3	Factors affecting the fish community	. 11.9
	11.8.4	Summary of the fish condition in Mvoti to Umzimkulu WMA	11.11
1	1.9 BIF	RDS	11.13
	11.9.1	Bird groups	11.13
	11.9.2	Baseline description	11.14
	11.9.3	Factors driving waterbird community structure and abundance	11.14
	11.9.4	Summary of the bird condition in Mvoti to Umzimkulu WMA	11.15
12	APPE	ENDIX C: ESTUARY ECOLOGICAL IMPORTANCE	. 12.1
	12.1.1	National biodiversity importance	. 12.1
	12.1.2	Regional biodiversity Importance	. 12.3
13	APPE	ENDIX D: REPORT COMMENTS	.13-1

LIST OF TABLES

T 11 0 1	
Table 2.1	Ecological Categories (DWAF 2008)
Table 2.2	Schematic illustration of the relationship between loss of ecosystem condition and
	functionality
Table 2.3	Relationship between the EHI, PES and minimum ERC2-5
Table 2.4	Estuary protection status and importance, and the basis for assigning a
	recommended ecological reserve category (modified from DWA 2008)2-5
Table 2.5	Matrix used to determine a combined EIS/SCI and PES value which provides an
	Integrated Environmental Importance value2-7
Table 2.6	Matrix used in assessing hotspots2-9
Table 2.7	Confidence levels for an Estuarine EWR study (DWA 2008)2-9
Table 3.1	Present ecological state of the estuaries
Table 4.1	National priorities, the extent of protection required (Full = full no-take protection
	(modified from Turpie et al. 2012)5
Table 4.2	Ecological Importance rating
Table 4.3	Estuary importance scores for the Mvoti to Umzimkulu WMA estuaries calculated on
	a national scale (DWAF 2008, Turpie and Clark 2007, Turpie et al. 2002)
Table 4.4	The Recommeded Ecological Catogory for the estuaries of Mvoti to Umzimkulu
	<i>WMA</i>
Table 5.1	Socio-Cultural Importance rating
Table 5.2	Overall SCI scores for the Mvoti to Umzimkulu WMA estuaries
Table 6.1	Meaning of WRUI score
Table 6.2	WRUI scores for the estuaries of the Mvoti to Umzimkulu WMA
Table 7.1	Estuary hotspots in Mvoti to Umzimkulu WMAiii
Table 7.1 Table 7.2	Mvoti to Umzimkulu WMA Estuary hotspots with a 4 ratingiv
Table 7.2 Table 7.3	Mvoti to Umzimkulu WMA Estuary hotspots with a 3 rating
Table 8.1	Estuaries EWR and recommendations
Table 8.2	Recommended minimum requirements for long-term monitoring
Table 10.1	The mouth positions of the Mvoti to Umzimkulu WMA estuaries
Table 10.1 Table 11.1	Assesment of the hydrology of the Mvoti to Umzimkulu WMA estuaries
Table 11.1 Table 11.2	
Table 11.2	An assesment of the hydrodynamics (mouth state) of the Mvoti to Umzimkulu WMA estuaries
Table 11.3	Assesment of the Physical habitat of the Mvoti to Umzimkulu WMA estuaries 11.6
Table 11.4	An assesment of the salinity changes of the Mvoti to Umzimkulu WMA estuaries11.7
Table 11.5	Daily WWTW volumes discharged into the estuaries
Table 11.6.	Assesment of the water quality of the Mvoti to Umzimkulu WMA estuaries 11.12
Table 11.7	Macrophyte habitats and functional groups recorded in the Mvoti to Umzimkulu
	WMA estuaries (spp. examples in italics)
Table 11.8	Effect of abiotic characteristics and processes, as well as other biotic components
	on macrophyte habitats
Table 11.9	A summary of the macrophyte conditions of the Mvoti to Umzimkulu WMA estuaries
	based on available information. The following historical assessments are
	summarised below: Begg (1978) condition (G=Good, F=Fair, D=Degraded,
	HD=Highly disturbed);Forbes & Demetriades (2009) Pressure (H=High, M=Medium,
Tabla 11 10	L=Low); Harrison (2000) Aesthetic score (G=Good, M=Moderate, P=Poor) 11-16
Table 11.10	Macrophyte habitats and functional groups recorded in the Mvoti to Umzimkulu
	WMA estuaries (spp. examples in italics) 11.1

Table 11.11	Effect of abiotic characteristics and processes, as well as other biotic components on microalagae
Table 11.12	Summary of the microalgae component condition
Table 11.13	Classification of the main South African estuarine invertebrate fauna and the
	parameters influencing their abundance and distribution. POM = particulate organic
	matter, MPB = Microphytobenthos
Table 11.14	Effect of abiotic characteristics and processes, as well as other biotic components
	on invertebrate groupings11.5
Table 11.15	Summary of the invertebrate component condition
Table 11.16	Classification of South African fish fauna according to their dependence on estuaries (Whitfield 1994)
Table 11.17	Summary of fish responses to abiotic processes and biotic components
Table 11.18	Summary of the Fish compoent condition and an estimated annual cach in tons to
	provide and indication of fishing pressure on the estuaries of Mvoti to Umzimkulu
	WMA11.11
Table 11.19	Major bird groups found in the Mvoti to Umzimkulu WMA estuaries, and their
	defining features (Modified from Van Niekerk et al 2013) 11.13
Table 11.20	Effect of abiotic characteristics and processes, as well as other biotic components
	on bird groupings (Modified from Van Niekerk et al 2013) 11.14
Table 11.21	Summary of the bird compoent condition 11.15
Table 12.1	Ecological Importance rating 12.1
Table 12.2	Estuary importance scores on a national scale for the Mvoti to Umzimkulu WMA
	estuaries. The overall importance score (I) is calculated from the size score (S),
	habitat importance score (H), zonal type rarity score (Z) and the updated biodiversity
	importance score (B) (DWAF 2008, Turpie and Clark 2007, Turpie et al. 2002) 12.1
Table 12.3	Estuaries in the Mvoti-Umzimkulu WMA that support mangrove habitat
Table 12.4	Estuaries in the Mvoti-Umzimkulu WMA that contain submerged macrophytes 12.4
Table 12.5	Estuaries in the Mvoti-Umzimkulu WMA that contain supratidal saltmarsh 12.4
Table 12.6	Estuaries in the Mvoti-Umzimkulu WMA that that support the 10 largest reed and
	sedges habitat
Table 12.7	Estuaries in the Mvoti-Umzimkulu WMA that contain Swamp forest
Table 12.8	Relative importance of the estuaries of Mvoti to Umzimkulu WMA for fish 12.6
Table 12.9	Relative importance of the estuaries of Mvoti to Umzimkulu WMA for birds 12.2

LIST OF FIGURES

Figure 1.1	The Mvoti to Umzimkulu Water Management Area (from DWA, 2011)1-2
Figure 2.1	Summary of the process to identify estuary hotspots for monitoring and EWR
	assessments2-1
Figure 2.2	Components and weightings of the Estuarine Health Index (DWAF 2008)2-4
Figure 10.1	Schematic illustration of the approach adopted for water quality condition 11.10

ABBREVIATIONS

BAS Best Attainable State	
CD Chief Directorate	
CD: RDM Chief Directorate: Resource Directed Measur	res
CPUE Catch-per-unit-effort	
CSIR Centre of Scientific and Industrial Research	
D:RQS Directorate: Resource Quality Services	
DEA: O&C Department of Environmental Affairs: Oceans	s and Coast
DIN Dissolved Inorganic Nitrogen	
DIP Dissolved Inorganic Phosphate	
DO Dissolved Oxygen	
DRP Dissolved Reactive Phosphate	
DRS Dissolved Reactive Silicate	
DWA Department Water Affairs (Name change app	licable after April 2009
DWAF Department of Water Affairs and Forestry	
EC Ecological Category	
EcoSpecs Ecological Specifications	
EGSA Ecological Goods and Services Attributes	
EHI Estuarine Health Index	
El Ecological Importance	
EIS Estuarine Importance Score	
ERC Ecological Reserve Category	
EWR Ecological Water Requirement	
H High	
IEI Integrated Environmental Importance	
IUA Integrated Unit of Analysis	
IWRM Integrated Water Resource Management	
L Low	
M Medium	
MAR Mean Annual Runoff	
MC Management Class	
MCM Million Cubic Metres	
MCM/a Million Cubic Metres per annum	
MSL Mean Sea Level	
NBA National Biodiversity Assessment	
NMMU Nelson Mandela Metropolitan University	
NWA National Water Act (1998)	
PES Present Ecological State	
ppt Parts per thousand	
PSP Professional Service Provider	
REC Recommended Ecological Category	
RQO Resource Quality Objectives	
RU Resource Unit	
RWQO Resource Water Quality Objective	
SA South Africa	
SCI Socio-Cultural Importance	
WARMS Water Authorisation and Registration System	

WMA	Water Management Area	
WRCS	Water Resource Classification System	
WRUI	Water Resource Use Importance	
WRYM	Water Resource Yield Model	

1 INTRODUCTION

1.1 BACKGROUND

There is an urgency to ensure that water resources in the Mvoti to UmzimkuluWater ManagementArea (WMA) are able to sustain their levels of use and be maintained in their desired states. The determination of the Management Classes (MC) of the significant water resources in Mvoti to Umzimkulu WMA will ensure that the desired condition of the water resources, and conversely the degree to which they can be utilised is maintained and adequately managed within the economic, social and ecological goals of the water users (DWA, 2011). The Chief Directorate: Resource Directed Measures (CD: RDM) of the Department of Water Affairs (DWA) initiated a study during 2012 for the provision of professional services to undertake the Comprehensive Reserve, classify all significant water resources and determine the Resource Quality Objectives (RQOs) in the Mvoti to UmzimkuluWMA.

The objective of this task was to describe and document the status quo of the 64 estuaries occurring within the Mvoti to Umzimkulu Water Management Area (WMA). This requires that the status quo (Present Ecological Status), importance, and hotspots be identified for all the systems in the WMA. It also requires that the EWRs be addressed for the all the estuaries. Since these processes cannot be addressed at a detailed level for all the systems within the time frames of this study, using the above principles, a process of prioritization had to be followed to determine which of the 64 estuaries must be assessed at higher than desktop levels. The output of this study is therefore that a desktop level of information on EcoClassification is available for all estuaries; including hotspots identified and levels of EWR assessment determined for each estuary. The output of this task will serve as a strategic tool that will guide current and future monitoring requirements, and ultimately EWR determinations.

1.2 STUDY AREA OVERVIEW

The Mvoti to Umzimkulu WMA encompasses a total catchment area of approximately 27,000 km² and occurs largely within Kwazulu-Natal. A small portion of the Mtamvuna River and the upper and lower segments of the Umzimkulu River straddle the Eastern Cape, close to the Mzimvubu and Keiskamma WMA in the south (DWA, 2011). The study area is shown in Figure 1.1.

The WMA extends along the KwaZulu-Natal coast from of Zinkwazi in the north to Port Edward in the south. It extends inland to the Drakensberg escarpment to the towns of Underberg and Greytown. The WMA spans across the primary catchment "U" and incorporates the secondary drainage areas of T40 (Mtamvuna River in Port Shepstone) and T52 (Umzimkulu River). Ninety quaternary catchments constitute the water management area and the major rivers draining this WMA include the Mvoti, uMngeni, uMkhomazi, Umzimkulu and Mtamvuna (DWA, 2011).

Land cover in the catchment is dominated by grasslands and undeveloped rural land use. Urban land use in the WMA is concentrated along the coast from Umhlanga Rocks in the north to Port Edward in the south and the metropolitan areas of Durban and Pietermaritzburg. Agricultural (sugar cane farming) is predominant along the coast (Tongaat to Stanger) and intermittent in the interior. Forestry is practiced in the vicinity of Greytown to Howick, Richmond and the southeastern portion of the WMA. Indigenous forests and wetlands are sparsely distributed across the WMA (DWA, 2011).

Figure 1.1 The Mvoti to UmzimkuluWater Management Area (from DWA, 2011).

As is the case over the wider South Africa water resources in the Mvoti to Umzimkulu WMA are increasingly stressed due to an accelerated rate of development and changing weather patterns resulting in the scarcity of water (DWA, 2011). The importance of the water resources in the Mvoti to UmzimkuluWMA is best illustrated by the high level of water stress currently being experienced in the area due to the water use being substantially more that the long-term sustainable yields of the resources (DWA, 2010a).

1.3 ASSUMPTIONS AND LIMITATIONS FOR THIS STUDY

The following assumptions and limitations should be taken into account:

- The accuracy and confidence of an Estuarine Ecological Water Requirements study are strongly dependent on the quality of the hydrology information. The overall confidence in the hydrology data supplied to the estuarine study team is of a medium level (60-80), with a particular concern regarding the accuracy of the simulated base flows during the low flow periods into each estuary (Confidence = Low).
- 2. The degree to which the Mvoti to Umzimkulu WMAEstuary EWR study can address the objectives of the overall Mvoti to Umzimkulu WMA study is seriously constrained by the lack of long-term monitoring data (e.g. 5 to 10 years of continuous river inflow and water level data) available in the study area. Without supporting information, critical aspects such as river flow ranges that drive estuary mouth states and related water quality conditions cannot be resolved to any degree of confidence.

1.4 REPORT STRUCTURE

Chapter 1: Introduction

This chapter provides the background and an overview of the study area.

Chapter 2: Method

Chapter 2 explains the approach taken in delineating the 64 estuaries of the Mvoti to Umzimkulu WMA. It also provides detail on the determination of the Present Ecological State, Estuary Importance, Recommended Ecological Category, Socio-Cultural Importance, Water Resource Use, and Priority estuaries or Hotspots.

Chapter 3: Baseline Description and Health Assessment

This section provides the detailed findings on the Present Ecological State of the estuaries in this WMA.

Chapter 4: The Recommended Ecological Category

This chapter highlights the national and regional conservation and biodiversity importance of the estuaries in the Mvoti to Umzimkulu WMA. The Recommended Ecological Category is then determined for the individual system based on its ecological importance.

Chapter 5: Socio-Cultural Importance

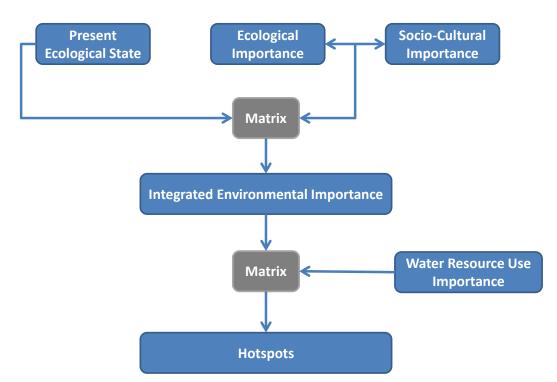
This section describes the Socio-Cultural Importance of the individual estuaries in the region based on their ritual use, aesthetic value, resource dependence, recreational use and historical/cultural value.

Chapter 6: Water Resource Use Importance

This chapter describes the Water Resource Use Importance of the individual estuaries in the region, by considering their current water balance of the catchment contributing to river flow, operational purposes, future development and water use, and river and dam water quality.

Chapter 7: Priority estuaries – Hotspots

Chapter 7 highlights the priority estuaries, also called Hotspots, for monitoring and EWR studies in the region, considering their PES, Ecological and Socio-Cultural Importance within the context of their Water Resource Use Importance.


Chapter 8: EWR Recommendations

This section summarises the remedial actions required to improve the condition of individual system as well the monitoring requirements to improve confidence in future studies.

2 METHOD

2.1 DESKTOP ESTUARY ASSESSMENT APPROACH

The desktop estuary assessment method is used as basis for the identification of hotspots and determination of different levels of estuary EWR assessment. Apart from the role this will play in this study, the results of the desktop study will also be useful for strategic planning, scoping exercises, and for determining the level of EWR assessment for licenses. The methodology consists of various methods and tools. The process used is described in Figure 2.2.

Figure 2.1 Summary of the process to identify estuary hotspots for monitoring and EWR assessments.

This study starts with the delineation of the 64 estuaries of the Mvoti to Umzimkulu WMA. This is followed by the assessment of the Present Ecological State of the individual estuaries in this WMA. This is then followed by the determination of the Recommended Ecological Category system based on their ecological importance.

In addition the Socio-Cultural Importance of the individual estuaries in the region is established based on their ritual use, aesthetic value, resource dependence, recreational use and historical/cultural value. The Integrated Environmental Importance is then evaluated based on the Ecological and Socio-Cultural importance of the individual system integrated with their PES. The PES forms part of the Integrated Environmental Importance as estuaries in good condition are important in their own right as they assist in achieving national biodiversity targets. The Water Resource Use Importance of the individual estuaries in the region is also established, considering current water balance of catchments contributing to river flows, operational purposes, future development and water use, and river and dam water quality.

In the final step the priority estuaries, also called Hotspots (important reservoirs of biodiversity threatened with destruction), is determined based on their Integrated Environmental Importance

within the context of the Water Resource Use Importance. The different tools and methods used explained in the following sections in this chapter.

2.2 LOCATION AND DELINEATION OF MVOTI TO UMZIMKULU WMA ESTUARIES

Over longer time scales the total area occupied by the various estuarine habitat types tends to remain more or less constant, while the actual spatial location of the various estuarine habitats is highly likely to change between resetting events (e.g. larger floods). This relatively ephemeral nature of estuarine habitat presents an assessment and planning challenge. Water resource protection requires the delineation of the geographical boundaries of the resource. In order to do this it is important to define the space within which estuaries function to ensure their present and future health.

Mapping was undertaken of nearly 300 functional estuarine systems along the South African coastline as part of the NBA 2011. For each estuary the estuarine functional zone (estuarine ecosystem area) and open water areas were digitized using Spot 5 imagery (2008) and Google Earth. For the most part the images were relatively cloud free, but where cloudy conditions occurred on SPOT 5 images, Google images were used. The lateral boundaries included all the associated wetlands, intertidal mud and sand flats, beaches and foreshore environments that are affected by riverine or tidal flood events (Edgar, 2000). The 5 m topographical contour (obtained from Chief Directorate Surveys and Mapping) was used as the boundary to delineate the estuarine functional zone. Where the 5 m contour was not available in digital format, orthophotos (1:10 000) were scanned, georeferenced and the 5 m contour was digitized. From the estuarine functional zone delineation, spatial data such as area, length and perimeter (estuary coastline) and distance to the next system could be inferred.

The estuary mouth was taken as the downstream boundary of an estuary or, where the mouth was closed, the middle of the sand berm between the open water and the sea. The upstream boundary was determined as the limits of tidal variation or salinity penetration, whichever penetrates furthest up the system. This is in line with recent scientific studies and the administrative definition of a South African estuary (DWAF 2008).

Wherever possible the upstream boundary was derived from the literature, expert judgment or field observations. In a number of systems no data were available and the upper boundary was taken as the 5 m topographical contour (bearing in mind that the tidal range in South Africa is microtidal (< 2 m) and sand bars at closed estuary mouths can sometimes build up as high as + 4.5 m Mean Sea Level (MSL). The upper boundaries were also screened against other existing spatial delineations, e.g. the KwaZulu-Natal Estuaries database (Version 1.00.02) and the delineation developed for Durban estuaries (Forbes and Demetriades 2008) with preference given to data from the larger scale studies. Spatially, files were converted to GoogleEarth (KMZ formats) and reviewed during the desktop health for comment. Systems that need additional ground truthing were identified.

Appendix A (Table 10.1) provides the positions of the Mvoti to Umzimkulu WMA estuaries outlets (mouths). The lateral boundaries were taken as the 5 m contour above Mean Sea Level (MSL) along each bank.

2.3 PRESENT ECOLOGICAL STATE

The Mvoti to UmzimkuluWMA Estuarine Health Assessment was conducted as a desktop procedure during which a regional team of specialists, covering the full suite of disciplines, evaluated estuary health based on the general characteristics of the estuaries. The method used was a standardized approach developed for determining the ecological water requirements of South Africa's estuaries which has been applied to about 30 systems along the coast and applied in the National Biodiversity Assessment in 2009 (Van Niekerk and Turpie, 2012). All the specialists that contributed to the assessment were familiar with the Estuarine Health Index from previous DWA studies.

The health condition (also called the Present Ecological State (PES)) of an estuary is typically defined on the basis of current condition (i.e., the extent to which it differs from its reference or natural condition). Based on the above, estuary condition is described using six Ecological Categories (EC), ranging from natural (A) to critically modified (F) (Table 2.1). The fact that the physical conditions in estuarine systems are more dynamic than those of other aquatic ecosystems means that severe degradation of an estuary may involve a shift from a dynamic to a more stable, or unidirectional, system. This means that the loss of dynamic function per se is an important indication of declining estuarine health (DWAF 2008). Thus, in an estuarine health assessment, measures of these different states need to be sufficiently robust so that different practitioners/disciplines will arrive at the same categorisation.

Health Condition	Description
А	Unmodified, natural.
В	Largely natural with few modifications. A small change in natural habitats and biota may have taken place but the ecosystem functions and processes are essentially unchanged.
С	Moderately modified. A loss and change of natural habitat and biota have occurred but the basic ecosystem functions and processes are still predominantly unchanged.
D	Largely modified. A large loss of natural habitat, biota and basic ecosystem functions and processes have occurred.
E	Seriously modified. The loss of natural habitat, biota and basic ecosystem functions and processes are extensive.
F	Critically/Extremely modified. Modifications have reached a critical level and the system has been modified completely with an almost complete loss of natural habitat and biota. In the worst instances the basic ecosystem functions and processes have been destroyed and the changes are irreversible.

Table 2.1Ecological Categories (DWAF 2008).

The Estuarine Health Index was calculated through consideration of the following components (DWAF 2008):

A. Abiotic	B. Biotic
 Hydrology (% change in MAR) Hydrodynamics and mouth condition Water chemistry (salinity and combined score for other variables) Sediment processes 	 Microalgae Macrophytes Invertebrates Fish Birds

The assessment was undertaken by a multidisciplinary group of estuarine scientists in a workshop setting, based on their collective understanding of the likely impacts affecting each system. Expert knowledge and available information were all used to build a "picture" of the probable pristine state of each estuary and the changes under current conditions. The Estuarine Health Index is applied to all levels of ecological water requirement studies (comprehensive, intermediate or rapid), with only the level of information supporting the study and level of confidence varying. For each variable the conditions are estimated as a percentage (0 - 100%) of the pristine health. Scores are then weighted and aggregated so that the final score reflects the present health of the estuary as a percentage of the pristine state (Figure 2.1). Both abiotic and biotic variables are included as the relationships between the abiotic and biotic variables are often not well understood and because the biotic response to certain abiotic variables can be lagging.

For comparative reasons (with previous assessments) the individual health scores were aggregated as illustrated in Figure 2.2 and Table 2.2. In estuaries, unlike the terrestrial environment, degradation or loss of habitat seldom means a complete loss of system health or function. This can only happen if an estuary becomes completely degraded, e.g. changed into a parking lot or golf course. In most cases, degradation means loss of processes or loss of biological functionality, e.g. the estuarine space is filled with a different salinity condition or different species composition. This loss of functionally happens on a continuum, with estuaries which retain more than 90% of their natural processes and pattern being rated as Excellent and estuaries degraded to less of 40% of natural functionality rated as Poor.

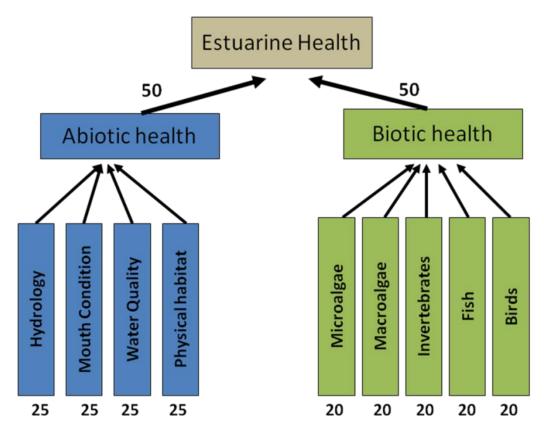


Figure 2.2 Components and weightings of the Estuarine Health Index (DWAF 2008).

Table 2.2 Schematic illustration of the relationship between loss of ecosystem condition and functionality.

Condition	≥91%	90-75	75 - 61	60 - 41	40-21	≤20
Category	A Natural	B Largely natural with few changes	C Moderately modified	D Largely modified	E Highly degraded	F Extremely degraded
State	Excellent	Good	Fair		Poor	
Functionality	Retain ty Process & Pattern (representation)		Loss of Process or Pattern		No Process & Pattern	

2.4 RECOMMENDED ECOLOGICAL CATEGORY

The Recommended Ecological Category (REC) represents the level of protection assigned to an estuary. The first step is to determine the 'minimum' EC, based on its PES. The relationship between Estuary Health Index (EHI) score, PES and minimum REC is given in Table 2.3.

EHI score	PES	Description	Minimum EC
91 – 100	A	Unmodified, natural	А
76 – 90	В	Largely natural with few modifications	В
61 – 75	С	Moderately modified	С
41 - 60	D	Largely modified	D
21 - 40	Е	Highly degraded	-
0-20	F	Extremely degraded	-

 Table 2.3
 Relationship between the EHI, PES and minimum ERC

Thus PES sets the minimum REC. The degree to which the REC needs to be elevated above the PES depends on the level of **importance** and level of **protectionor desired** protection of a particular estuary (Table 2.4).

Table 2.4Estuary protection status and importance, and the basis for assigning a
recommended ecological reserve category (modified from DWA 2008).

Protection status and importance	REC	Policy basis		
Protected area	A or BAS*	Protected and desired protected areas should be restored to and maintained in the best possible state		
Desired Protected Area		of health		
Extremely important (Ranked as 1)	PES + 1, min B	Highly important estuaries should be in an A or B category		
Very Important (Ranked as 2)	PES + 1, min C	Important estuaries should be in an A, B or C category		
Of low to average importance (Ranked as 3-1)	PES, min D	Estuaries to remain in a D category		

* BAS = Best Attainable State

2.5 INTEGRATED ENVIRONMENTAL IMPORTANCE

2.5.1 Ecological Importance and Sensitivity

The ecological importance of an estuary is an expression of its importance to the maintenance of biological diversity and ecological functioning on a regional, national or global scale. Ecological sensitivity (or resilience) refers to the system's ability to resist disturbance and its capability to recover from disturbance once it has occurred (Resh et al., 1988; Milner, 1994). Both abiotic and biotic components of each estuary were taken into consideration in the assessment. These were then ranked based on their expected importance, condition and dependence on the estuaries.

2.5.2 Socio-Cultural Importance

The Socio-Cultural Importance (SCI) was generated by evaluating each estuary based on its ritual use, aesthetic value, resource dependence, recreational use, historical/cultural value. Scores were then adjudged to reflect the importance of each component relative to the other. In the model the following mechanism for arriving at the final score was adopted with a relative weighting for the importance within the context of the catchment. "Ritual Use" had a weighting of 40 points, "Aesthetic Value" a weighting of 20 points, "Resource Dependence" a weighting of 100 points, "Recreational Use" a weighting of 50 points, and "Historical Cultural" Value a weighting of 75 points.

2.5.3 Integrated Environmental Importance Assessment

As described above, the Ecological and Socio-Cultural importance were assessed separately and then integrated with the PES to determine the Integrated Environmental Importance. The PES forms part of the Integrated Environmental Importance because estuaries in good condition are important in their own right as they assist in achieving national biodiversity targets. An estuary that is in very good condition, but of low ecological, and/or SCI; might still be important from an ecological perspective, as it could be one of a limited number of that estuary ecosystem type that is in good condition.

The Integrated Environmental Importance also provides an indication of the restoration potential. Restoration potential refers to the probability of achieving rehabilitation of the estuary to an improved state. For example, if an estuary has very high Ecological and Socio-Cultural importance, but is in bad condition, the restoration potential is often low and that will result in a low Integrated Environmental Importance.

The EIS and SCI ratings were not averaged, but the highest score of the two was used to integrate it with the PES. A matrix (Table 2.5) to aid in consistently providing an integrated rating comparing EIS, SCI, and PES was designed during 2006 (Louw and Huggins, 2007) and modified for this study to automate the process and thereby produce more consistent answers.

Table 2.5Matrix used to determine a combined EIS/SCI and PES value which provides an
Integrated Environmental Importance value.

_	Very high	5	3	3	4	5	5	Ī						
sci	High	3-3.99	3	3	3	5	5							
i S& nay	Moderate	2-2.99	2	2	3	4	5							
EI-ES&S((max)	Low	1-1.99	1	1	2	4	4							
	Very low	0-0.99	1	1	2	3	4							
			E/F	D	С	В	Α	Category						
				PES										

2.6 WATER RESOURCE USE IMPORTANCE

The water resource use rating system guides the selection of estuaries for monitoring and EWR determinations. The study will use the assigned water resource use rating in conjunction with a rating of the ecological importance to select the location and define the Ecological Water Requirement determination method for each site.

The priority rating method consists of assigning a qualitative score to a river reach just above an estuary for four variables or factors that represent the status of the in-stream flow. The scores of the four variables are combined to determine an overall score in conjunction with the quality and confidence of the data on which the score is based. The scoring will represent the importance of the river reach in terms of the water resource use and guide the selection of the EWR determination method to be applied. The variables or factors included in the rating method aim to represent the status and function of the river reach.

In support of developing scoring values per river stretch, all available information and data per quaternary catchment related to water use, operations, development and quality considerations are summarized in a table. The following types of information are typically used to support the scoring (depending on the detail provided by the sources study) of quaternary catchment and river stretches:

Current water balance of catchment contributing to flow:

- Date of present day use
- Area of SFR, irrigation and farm dams as percentage of quaternary area
- Estimated Natural MAR
- Estimated Present Day MAR
- Total Present Day Use (Surface Water)
- Total Present Day Use (Groundwater)
- Estimated Natural MAR Reduction to present MAR

Operational Purposes:

- Large dams
- Number of existing large upstream dams
- Major release made from dams to support d/s users and system
- Size of influence on natural flows

Future development and water use:

- Future development type
- Likelihood of happening

• Perceived impact

River and Dam Water Quality

- Major industry and towns
- Known and size of SW water quality problems
- Known and size of GW water quality problems
- Observed SW TDS

2.7 PRIORITY ESTUARIES – HOTSPOTS

A biodiversity/ecological hotspot is a biogeographic region which is a significant reservoir of biodiversity which is threatened with destruction (Myers, et al, 2000). In the context used here, a hotspot represents an estuary with a high ecological importance which could be under threat due to its water resource use. The hotspots are therefore an indication of areas where monitoring and/or detailed investigations would be required if development was being considered. These hotspots usually represent areas which are already stressed, or will be stressed in future.

Classification is usually undertaken for a large area with many IUAs. IUAs are a combination of the socio-economic region defined in watershed boundaries, within which ecological information is provided at a finer scale. This requires that biophysical nodes, in this case an individual estuary, be nested within the IUAs (DWA, 2007b). The hotspot identification provides an indication of monitoring intensity and the level of EWR assessment required at each biophysical node. In essence, this is a filtering process where the detailed monitoring and assessment is prioritised at the hotspots.

The purpose of the identification of estuary hotspots for this study was the following:

- To provide an indication where monitoring (especially long-term river inflow and water level recoding data needs to be collected) needs to be prioritised.
- To provide guidance to levels of EWR that might be required for licensing purposes within the framework provided by the National Water Resource Classification System (NWRCS).
- To provide an indication where scenario development and testing would be important.
- To provide guidance to areas with a very low hotspot evaluation as flow requirements for these might be not be necessary.

The steps used to identify the priority areas (hotspots) were:

- Desktop EcoClassification which included the determination of the Present Ecological State (PES), the Ecological Importance, and the Socio-Cultural Importance (SCI).
- Determination of the Integrated Ecological Importance (IEI) by incorporating the PES, Ecological Importance, and the SCI.
- Determining the Water Resource Use Importance (WRUI).
- Identification of the estuaries which were priority hotspots based on of high IEI and/or WRUI.
- Provide recommendations for the locality of detailed monitoring and EWR studies.

Hotspots (priority areas with overall importance) are identified by comparing (or overlaying) Integrated Environmental Importance with Water Resource Use Importance. In the context used here, a hotspot represents an estuary with a high Integrated Environmental Importance which could be under threat due to its importance for water resource use. These hotspots usually represent areas which are already stressed or will be stressed in future. This assessment can therefore guide decision-making with regard to which areas are in need of detailed monitoring and EWR studies.

A matrix was used to guide the consistent identification of hotspots (Table 2.6) (modified from Louw and Huggins, 2007). The Y-axis is based on the Integrated Environmental Importance value derived from the first matrix (Table 2.5). The X-axis depicts an estimate of water resource use, with 0 being of no importance and 4 being of very high importance. The information derived from the matrix provides an indication of the level of studies required. Although the terminology used is the same as that used for the different levels of EWR studies in South Africa, it is a descriptive term which is relevant for any environmental assessment required.As an example an Integrated Environmental Importance of 2.5 and Water Resource Use importance value of 3.5 would require more detailed investigations and monitoring and this specific Management Resource Unit would represent a hotspot.

				Water Resource Importance							
			Very low	w Low		Mo	derate	Hi	gh	Very	hiah
			0	0.5	1	1.5	2	2.5	3	3.5	4
	Very low	0-0.99	1	1	1	1	1	1	1	2	2
	Low	1-1.99	1	1	1	1	1	2	2	2	3
Ш	Moderate	2-2.99	1	1	1	2	2	2	3	3	3
	High	3-3.99	1	2	2	2	2	3	3	4	4
	Very high	4-5	2	2	2	2	3	3	4	4	4

Table 2.6Matrix used in assessing hotspots.

2.8 DEFINITION OF CONFIDENCE LEVELS

The level of available historical data in combination with the level of effort expended during the assessment determines the level of confidence of the study. Three levels of study have been recognised in the past in terms of the effort expended during the assessment – rapid (low confidence), intermediate (medium confidence) and comprehensive (high confidence). In this study, effort lay somewhere between a low and medium confidence study, in that very limited historical field data were available that would allow for the correlation between river inflow, mouth state and water quality parameters. Therefore the confidence of the study is low. This is a situation that can only be remedied with some comprehensive and long-term data collection on the system. Criteria for the confidence limits attached to statements in this study are shown in Table 2.7.

Confidence level	Situation	Expressed as percentage
Low	If no data were available for the estuary or similar estuaries	< 40 certainty
Medium	If limited data were available for the estuary or other similar estuaries	40 – 80% certainty
High	If sufficient data were available for the estuary	> 80% certainty

3 BASELINE DESCRIPTION AND HEALTH ASSESSMENT

3.1 PRESENT ECOLOGICAL STATE (PES)

The assessment of present ecological state clearly shows the footprint of urbanisation on the estuaries (Table 3.1). In most cases inflowing-hydrology is still in relatively good condition. Exceptions include urbanised systems where WWTWs have elevated base flows significantly. The hydrodynamics (Mouth State) and salinity distributions therefore show a similar pattern.

In contrast to the hydrology, the water quality in a large number of estuaries in this WMA has been modified significantly. This is largely attributed to diffuse agricultural runoff in rural areas (e.g. fertilizers, herbicides and pesticides) and contaminated stormwater runoff from urban development (e.g. nutrients and toxic substances). In some estuaries, water quality has been compromised by point source WWTW effluent being discharged into estuaries or into rivers near the head of estuaries. With the exception of the larger fast-flowing estuaries (e.g. the Mtamvuna, uMkhomazi, uMngeni and Umzimkulu) most systems along this stretch of coast are relatively small with a very high vulnerability to increased nutrient loading. It should also be noted that while the overall waterquality condition score for Durban Bay was relatively good this is largely as a result of tidal flushing of the lower reaches of this system. Important estuarine habitats (mangroves, mud and sand banks) in this Bay occur in the upper reaches however, and these are subject to reduced flushing and direct impacts of very poor water quality inflows from surround urban areas. In addition to the historic and ongoing physical alteration and destruction of habitat due to port development, water quality in these regions of the Bay significantly threatens ecological integrity.

Generally urbanisation has led to significant habitat modification. Road and rail infrastructure have to some extent impacted every system along this stretch of coast. Most estuaries have one or two large bridges across them. Bridge foundations and abutments, road and rail berms have led to infilling of systems and consequentialhabitat destruction, or development across floodplain and channel stabilisation has impacted natural flow patterns have resulted in localised scour and deposition. Durban Bay, now an operational port, also stands out as a highly transformed estuary. The size of this system and its remaining ecological function however, still render this Bay an important estuarine resource. Sugar cane farming along the banks of a large number of systems has led to infilling of floodplains and general constriction of tidal flows as well as large scale loss of marginal vegetation and natural estuarine buffers. Catchments of estuaries in Tribal Trust areas are also subjected to increased poor agricultural practise, overstocking and increased sediment loads contributing to sedimentation in estuaries.

Macrophytes, in most cases, also reflected the effect of urbanisation, with a significant number of systems showing signs of severe degradation of floodplain vegetation. The effect of nutrient enrichment was clearly evident in reed encroachment in a number of systems. In most cases there was also a significant loss of habitat due to the presence of bridge abutments and berms.

Increased stormwater and nutrient input from wastewater treatment has caused eutrophication. Emergent species thrive under these conditions and invasive aquatic macrophytes such as water hyacinth (Eicchornia crassipes) and water cabbage (Pistia stratiotes) outcompete indigenous plants. Disturbed floodplain areas and riparian zones have been invaded by Brazilian pepper tree (Schinusterebinthifolia) and Lantanacamara. In many areas, drains have been used to dry out aquatic habitats in order to cultivate the floodplain. Overall, this has resulted in woodier vegetation, encroachment by terrestrial vegetation and a loss of aquatic habitat. Reduction in freshwater inflow to estuaries and an increase in the frequency and duration of closed mouth conditions is also a threat.

Microalgae have responded positively to increased nutrient loading and concomitant increase in growth of reed habitat, but these effects were somewhat buffered by the fact that the systems were fast flowing in their open state.

Alteration and destruction of habitat has resulted in impacts to estuarine invertebrate communities in the systems in the study areas. These have arisen mostly due to development around (and in some case over) estuarine systems. Rail and road infrastructure, urban and sub-urban development has resulted in loss of reed banks and soft sediment habitat as well as volume of estuarine basins. Changes in hydrology are likely to have had impacts, especially to marine invertebrates, both though reduced connectivity (increased closure) and therefore reduced opportunity to recruit into estuaries, and through changes to the salinity regimes in some systems. The alien invasive snail Tarebia granifera has established in many systems and proliferates at the expense of indigenous gastropods. Although unstudied in South Africa, ecosystem impacts are highly likely to occur as a result of the proliferation of this alien species... Little is known of populations of several important invertebrates, such as thesandprawn Callichirus kraussi. Water quality impacts are likely to have played a role in invertebrates in many systems, and certainly to have in most estuaries in densely populated urban areas. Small TOCEs that are predominantly closed are especially prone to water quality impacts. Most of these systems exhibit some natural tendency towards depressed oxygen levels in deeper waters and this in exacerbated by the influence of increased nutrient inputs from surrounding land use and WWTWs.

Fish communities have responded to changes in hydrology in some systems, being sensitive to changes in mouth conditions. Most, if not all of the systems in the study area have experienced loss of estuarine habitat and loss of natural buffer on their perimeters and inflowing rivers. Critical habitat has been lost in some cases, which has resulted in marked reductions in fish diversity and nursery function. In this regard the loss of submerged aquatic vegetation, especially Zostera capensis (Sandlundlu, Umgababa, Sipingo, Durban Bay, and probably others) has undoubtedly played a significant role. In some systems, especially those in high density urban areas and those subjected to inflow from WWTWs, water quality is increasing becoming an issue. Fish kills have occurred in recent years in several estuaries in the eThekwini Municipal area (including Durban Bay) and in recent months north of Durban in the Mdlotane. These kills have been related to infrastructure failure and/or overloading). In some cases trophic impacts are likely to have manifest with favoured prey items (e.g. sandprawn Callichirus kraussi) either lost or reduced in some systems due to habitat loss, modification, or water quality impacts.

Birds were very sensitive to human disturbance with most systems in urban areas showing suppressed numbers. This was further exasperated in some systems by a reduction in food availability and suitable habitat.

IUA Code	Name	Hydrology	Hydrodynamics	Water Quality	Physical habitat	Habitat Score	Microalgae	Macrophytes	Invertebrates	Fish	Birds	Biological Score	EHI SCORE
T40E-05869	Mtamvuna	В	Α	Α	В	В	В	В	С	С	В	В	В
T40F-05953	Zolwane	Α	Α	Α	Α	Α	Α	В	В	С	В	В	В
T40F-05923	Sandlundlu	Α	Α	В	С	В	В	С	D	Е	D	D	С
T40F-05928	Ku-Boboyi	Α	В	В	В	В	В	В	В	С	С	В	В
T40F-05879	Tongazi	Α	Α	В	В	В	В	С	D	С	С	С	В
T40F-05884	Kandandhlovu	Α	В	С	С	В	В	С	D	С	С	С	В
T40F-05770	Mpenjati	Α	Α	В	D	В	В	С	D	D	В	С	В
T40F-05839	Umhlangankulu	Α	Α	D	D	С	С	D	Е	D	С	D	С
T40F-05820	Kaba	Α	Α	С	С	В	В	С	С	D	С	С	С
T40F-05666	Mbizana	Α	Α	В	С	В	В	С	С	С	В	В	В
T40G-05773	Mvutshini	Α	В	С	В	В	В	С	С	С	С	С	В
T40G-05722	Bilanhlolo	Α	Α	С	D	В	С	D	D	D	D	D	С
T40G-05768	Uvuzana	Α	Α	С	С	В	В	С	D	D	D	С	С
T40G-05739	Kongweni	Ε	Е	D	D	D	Ε	Е	D	D	D	D	D
T40G-05616	Vungu	В	Α	С	В	В	С	В	С	С	С	С	В
T40G-05644	Mhlangeni	В	В	С	D	С	С	D	D	D	С	С	С
T40G-05577	Zotsha*	В	С	С	В	В	в	С	С	в	В	в	В
T40G-05573	Boboyi	В	Α	В	С	В	В	С	С	С	С	С	В
T40G-05611	Mbango	D	D	D	D	D	D	Е	F	F	D	Е	Е
T52M-05547	Umzimkulu	В	В	С	С	В	В	В	С	В	В	В	В
U80A-05470	uMthente	В	В	В	D	В	В	D	С	D	С	С	С
U80A-05527	Mhlangamkulu	D	С	В	С	С	С	D	С	D	С	С	С
U80A-05461	Damba	D	D	В	D	С	С	С	С	D	С	С	С
U80A-05496	Koshwana	D	С	С	D	С	С	С	С	D	С	С	С
U80A-05456	Intshambili	D	С	С	С	С	С	С	С	С	С	С	С
U80C-05448	Mzumbe	В	В	С	D	С	С	Е	D	D	Е	D	С
U80D-05375	Mhlabatshane	Α	Α	В	С	В	В	D	С	С	С	С	В
U80D-05361	Mhlungwa	Α	Α	В	Е	В	В	Е	D	D	С	С	С
U80D-05374	Mfazazana	В	С	С	D	С	С	D	D	D	С	С	С
U80D-05345	Kwa-Makosi	В	В	В	С	В	В	С	С	С	С	С	В
U80D-05327	Mnamfu	С	С	С	С	С	С	С	D	D	С	С	С
U80F-05270	Mtwalume	В	С	С	С	С	С	С	D	D	D	С	С
U80G-05302	Mvuzi	В	С	С	D	С	С	С	С	С	С	С	С
U80G-05097	Fafa	С	В	С	D	С	С	D	D	D	D	С	С
U80H-05229	Mdesingane	Α	Α	С	D	В	С	Е	Ε	Ε	D	D	С
U80H-05202	Sezela	В	В	С	D	С	С	С	D	D	D	С	С
U80H-05186	Mkumbane	В	В	С	С	В	С	D	D	D	D	D	С
U80H-05109	uMuziwezinto	С	В	С	D	С	С	D	D	D	D	D	С
	N.11 1	Α	Α	С	С	В	С	С	В	В	С	В	В
U80H-05120	Nkomba	~											
U80H-05120 U80H-05120	Nkomba Mzimayi	C	В	С	С	С	С	С	D	С	С	С	С
					C D	C B		C D	D D	C D	C D	C D	C C

 Table 3.1
 Present ecological state of the estuaries.

IUA Code	Name	Hydrology	Hydrodynamics	Water Quality	Physical habitat	Habitat Score	Microalgae	Macrophytes	Invertebrates	Fish	Birds	Biological Score	n EHI SCORE
U80L-05056	Mahlongwane	В	Α	С	D	В	С	D	В	С	С	С	
U10M-04746	uMkhomazi	С	Α	С	D	С	С	D	С	D	D	С	С
U70E-05010	Ngane	В	В	С	D	С	С	D	D	D	D	D	С
U70E-04974	Umgababa	С	В	В	С	В	В	D	D	D	В	С	С
U70E-04942	Msimbazi	Α	Α	В	С	В	В	С	В	С	В	В	В
U70D-04905	Lovu	D	С	С	D	D	С	D	С	С	С	С	С
U70F-04893	Little aManzimtoti*	D	F	Е	В	D	F	D	F	F	D	Е	Е
U70F-04845	aManzimtoti	С	С	Ε	D	D	D	Е	F	F	Е	Е	D
U60E-04792	Mbokodweni*	С	Ε	Ε	D	D	D	Ε	F	Е	F	F	E
U60E-04827	Sipingo*	F	F	F	F	F	F	Е	F	F	F	F	F
U60F-04684	Durban Bay	F	Α	В	F	D	В	F	F	F	F	Е	E
U20M-04543	uMngeni*	D	В	Е	Е	D	D	F	F	F	Е	Е	Е
U30B-04498	Mhlanga*	D	Е	D	D	D	D	С	Е	Е	D	D	D
U30B-04475	uMdloti*	В	С	Е	С	С	F	Е	F	Е	F	Е	D
U30D-04315	uThongathi*	Α	Α	F	D	С	С	Е	Е	Е	F	Е	D
U30E-04207	Mhlali	В	В	С	D	С	С	D	С	D	D	С	С
U30E-04256	Bob's Stream	Α	Α	С	D	В	В	С	В	В	С	В	В
U30E-04256	Seteni	Α	Α	В	D	В	В	С	В	В	С	В	В
U40J-03998	Mvoti	С	В	Е	D	С	D	D	F	D	F	Е	D
U50A-04141	Mdlotane	Α	Α	В	В	В	В	В	В	С	В	В	В
U50A-04021	Nonoti	В	Α	D	С	В	С	D	D	F	D	D	С
U50A-04018	Zinkwasi	Α	Α	В	С	В	В	С	В	В	D	С	В

*Determined with an Ecological Water Requirement study **Mvoti based on historical EFR flow information

4 THE RECOMMENDED ECOLOGICAL CATEGORY

4.1 CONSERVATION IMPORTANCE OF THE MVOTI TO UMZIMKULU WMA ESTUARIES

The National Biodiversity Assessment 2011 (NBA 2011) (Van Niekerk and Turpie, 2012; Turpie et al. 2012) developed a biodiversity plan for the estuaries of South Africa by prioritising and establishing which of them should be assigned partial or full Estuarine Protected Area (EPA) status. This biodiversity plan followed a systematic approach that took pattern, process and biodiversity persistence into account. While the plan has not explicitly taken social and economic costs and benefits into consideration, it used ecosystem health as a surrogate for the former to some extent. This is because estuaries where the opportunity costs of protection are likely to be high are also likely to be heavily-utilised systems that are in a lower state of health.

The plan indicates that, on a national scale 133 estuaries (61 require full protection and 72 require partial protection) including those already protected, would be required to meet biodiversity targets (Turpie et al.2012). Of these, 21 fall within Mvoti to Umzimkulu WMA, with a subset of six estuaries requiring full protection (see Table 4.1 for more detail).

Fullyprotected estuaries are taken to be full no-take areas. Partial protection might involve zonation that includes a no-take area, or it might address other pressures with other types of action. In both these cases, the management objective would be to protect 50% of the biodiversity features of the partially protected estuary. Fully protected and partially protected estuaries can be considered Estuarine Protected Areas, whereas all other estuaries should be designated Estuarine Management Areas. All estuaries require a Management Plan and these plans should be guided by the results of this assessment.

The national priority list provides recommendations regarding the extent of protection required for each estuary, the recommended extent of the estuary perimeter that should be free from development to an appropriate setback line, and the preliminary Recommended Ecological Category (or recommended future health class) as required under the National Water Act (Table 4.1)

Estuary	NBA '11 PES	Recommended extent of protection	Recommended degree of undeveloped margin	NBA '11 REC
Mtamvuna	В	Full	75%	A or BAS
Mpenjati	В	Partial	75%	A or BAS
Zotsha	B*	Partial	50%	В*
Umzimkulu	B*	Partial	50%	B*
Damba	С	Partial	50%	С
Koshwana	С	Partial	50%	С
Intshambili	В	Partial	50%	В
Mhlabatshane	В	Partial	50%	В
Mfazazana	С	Partial	50%	С
Kwa-Makosi	В	Partial	75%	В
uMkhomazi	С	Partial	25%	В
Umgababa	В	Full	50%	В

Table 4.1National priorities, the extent of protection required (Full = full no-take
protection (modified from Turpie et al. 2012).

Estuary	NBA '11 PES	Recommended extent of protection	Recommended degree of undeveloped margin	NBA '11 REC
Msimbazi	В	Full	75%	В
Lovu	С	Partial	50%	С
Durban Bay	E	Partial	25%	В
uMngeni	E*	Partial	25%	D*
Mhlanga	D	Full	75%	В*
Mhlali	С	Partial	50%	В
Mvoti	D	Full	75%	D
Mdlotane	В	Full	75%	А
Zinkwasi	С	Partial	50%	В

*Current and recommended condition were determined by an ecological water requirement study, otherwise determined by the NBA 2011 study.

4.2 ESTUARY ECOLOGICAL IMPORTANCE

4.2.1 National Importance rating

The Estuary Importance Score (EIS) for an estuary takes size (S), the rarity of the estuary type within its biographical zone (Z), habitat (H), biodiversity importance (B) of the estuary into account (Table 4.3) (DWA 2008). Biodiversity importance, in turn is based on the assessment of the importance of the estuary for plants, invertebrates, fish and birds, using rarity indices. These importance scores ideally refer to the system in its natural condition. The scores have been determined for all South African estuaries, apart from functional importance, which is scored by the specialists during EWR workshops (DWA 2008).

To add resolution to the national estuary importance rating the EIS for the estuaries of Mvoti to Umzimkulu WMA were rated on a 1 (0-20) to 5 (80-100) scale to provide an indication of their biodiversity importance in the region (Table 4.2 and Table 4.3) (DWA 2008).

Importance score	Rating	Comment
0 - 20	1	Little
20.1 - 40	2	Some
40.1 - 60	3	Important
60.1 - 80	4	Very important
80.1 -100	5	Extremely important

Table 4.2Ecological Importance rating.

Table 4.3Estuary importance scores for the Mvoti to UmzimkuluWMA estuariescalculated on a national scale (DWAF 2008, Turpie and Clark 2007, Turpie et al. 2002).

Estuary	s	Н	z	В	I	National biodiversity Importance	Formal Protected Area	Planned PA	Conservation Importance
Mtamvuna	80	50	10	83	66.3	4	Pondoland MPA		5
Zolwane	10	20	10	24.5	16.1	1			1
Sandlundlu	30	40	10	55.5	36.9	2			1
Ku-boboyi	10	20	10	37.5	19.4	1			1
Tongazi	10	70	10	63	38.3	2			1
Kandandhlovu	20	20	10	34.5	22.6	2			1
Mpenjati	40	50	10	73.5	47.9	3	Mpenjati NR	NBA '11 Partial	5
Umhlangankulu	40	80	10	49.5	49.4	3			1
Kaba	20	40	10	25	25.3	2			1
Mbizana	40	70	10	80	54.5	3			1
Mvutshini	10	20	10	10	12.5	1			1
Bilanhlolo	20	60	10	76.5	43.1	3			1
Uvuzana	10	20	10	23	15.8	1			1
Kongweni	10	40	10	48.5	27.1	2			1
Vungu	10	30	10	39	22.3	2			1
Mhlangeni	20	40	10	59	33.8	2			1
Zotsha	30	80	10	55.5	46.9	3		NBA '11 Partial	5
Boboyi	10	40	10	45.5	26.4	2			1
Mbango	10	60	10	31	27.8	2			1
Umzimkulu	80	100	30	76	79	4		NBA '11 Partial	5
uMthente	30	80	10	30.5	40.6	3			1
Mhlangamkulu	30	10	10	17	19.8	1			1
Damba	20	90	10	25	37.8	2		NBA '11 Partial	5
Koshwana	10	80	10	24.5	31.1	2		NBA '11 Partial	5
Intshambili	20	80	10	26	35.5	2		NBA '11 Partial	5
Mzumbe	50	50	10	53.5	46.9	3			1
Mhlabatshane	20	90	10	26.5	38.1	2		NBA '11 Partial	5
Mhlungwa	20	60	10	47.5	35.9	2			1
Mfazazana	20	80	10	57.5	43.4	3		NBA '11 Partial	5
Kwa-Makosi	20	90	10	39.5	41.4	3		NBA '11 Partial	5
Mnamfu	10	80	10	10	27.5	2			1

Estuary	s	н	z	в	I	National biodiversity Importance	Formal Protected Area	Planned PA	Conservation Importance
Mtwalume	60	50	10	64	53.5	3			1
Mvuzi	10	50	10	29.5	24.9	2			1
Fafa	70	80	10	63	64.8	4			1
Mdesingane	10	30	10	29.5	19.9	1			1
Sezela	40	50	10	76.5	48.6	3			1
Mkumbane	10	40	10	50.5	27.6	2			1
uMuziwezinto	30	80	10	64	49	3			1
Nkomba						1			1
Mzimayi	10	40	10	24.5	21.1	2			1
Mpambanyoni	20	50	10	49	33.8	2			1
Mahlongwa	30	40	10	44	34	2		KZN	5
Mahlongwana	30	80	10	48	45	3		KZN	5
uMkhomazi	80	60	30	91.5	72.9	4		NBA '11 Partial	5
Ngane	10	40	10	67	31.8	2			1
Umgababa	50	60	10	63	51.8	3		NBA '11 Full	5
Msimbazi	50	50	10	84.5	54.6	3		NBA '11 Full	5
Lovu	40	80	10	78	56.5	3		NBA '11 Partial	5
Little aManzimtoti	10	80	10	37.5	34.4	2			1
aManzimtoti	30	70	10	84	51.5	3			1
Mbokodweni	30	40	10	72	41	3			1
Sipingo	30	100	10	63.5	53.9	3			1
Durban Bay	90	100	80	92.5	92.1	5		NBA '11 Partial	5
uMngeni	70	90	10	86.5	73.1	4	Beechwood NR	NBA '11 Partial	5
Mhlanga	80	70	10	79	70.3	4	EKZNW	NBA '11 Full	5
uMdloti	80	90	10	69	72.8	4			1
uThongathi	70	80	10	54.5	62.6	4			1
Mhlali	60	90	10	80	67.5	4		NBA '11 Partial	5
Bob' Stream						1			1
Seteni	10	80	10	37.5	34.4	2			1
Mvoti	60	30	70	80.5	58.6	3		NBA '11 Full	5
Mdlotane	60	90	10	65	63.8	4		NBA '11 Full	5
Nonoti	60	60	10	74.5	58.6	3			1
Zinkwasi	80	90	10	80	75.5	4		NBA '11 Partial	5

4.3 RECOMMENDED ECOLOGICAL CATEGORY

The REC for each Mvoti to Umzimkulu WMAestuaryis listed in Table 4.4.

VVIV		nportance	Regior	nal Impo	rtance	Overall		
Estuary		-	Macro-			impor- tance	PES	REC
	Biodiversity	Conservation	phytes	Fish	Birds	tance		
Mtamvuna	4	5	3	4	2	5	В	A or BAS
Zolwane	1	1		3		3	В	В
Sandlundlu	2	1	1	3		3	С	С
Ku-boboyi	1	1		2		2	В	В
Tongazi	2	1		3		3	В	В
Kandandhlovu	2	1	3	3		3	В	В
Mpenjati	3	5	1	3	1	5	В	A or BAS
Umhlangankulu	3	1	2	3		3	С	С
Kaba	2	1	1	3		3	С	С
Mbizana	3	1		3	2	3	В	В
Mvutshini	1	1		3		3	В	В
Bilanhlolo	3	1	2	3		3	С	С
Uvuzana	1	1		3		3	С	С
Kongweni	2	1	2	3		3	D	D
Vungu	2	1		3		3	В	В
Mhlangeni	2	1	1	3		3	С	С
Zotsha	3	5		3		5	В	A/B or BAS
Boboyi	2	1		3		3	В	В
Mbango	2	1		3		3	Е	D
Umzimkulu	4	5	5	3	1	5	В	A/B or BAS
uMthente	3	1		3		3	С	С
Mhlangamkulu	1	1	4	3		4	С	С
Damba	2	5	3	3		5	С	A/B or BAS
Koshwana	2	5		3		5	С	A/B or BAS
Intshambili	2	5	1	3	1	5	С	A/B or BAS
Mzumbe	3	1		3	1	3	С	С
Mhlabatshane	2	5	3	3		5	В	A/B or BAS
Mhlungwa	2	1	3	3		3	С	С
Mfazazana	3	5		3		5	С	A/B or

Table 4.4The Recommended Ecological Category for the estuaries of Mvoti to Umzimkulu
WMA.

_	National I	nportance	Regional Importance			Overall		
Estuary	Biodiversity	Conservation	Macro- phytes	Fish	Birds	impor- tance	PES	REC
								BAS
Kwa-Makosi	3	5	1	3		5	В	A/B or BAS
Mnamfu	2	1		3		3	С	С
Mtwalume	3	1		3	1	3	С	С
Mvuzi	2	1		3		3	С	С
Fafa	4	1	3	4	1	4	С	С
Mdesingane	1	1	2	3		3	С	С
Sezela	3	1		3	1	3	С	С
Mkumbane	2	1		3		3	С	С
uMuziwezinto	3	1		3		3	С	С
Nkomba	1	1		1		1	В	В
Mzimayi	2	1		3		3	С	С
Mpambanyoni	2	1		3		3	С	С
Mahlongwa	2	5		3		5	С	A/B or BAS
Mahlongwana	3	5	4	3		5	С	A/B or BAS
uMkhomazi	4	5	5	4	3	5	С	В
Ngane	2	1		3		3	С	С
Umgababa	3	5	4	4		5	С	A/B or BAS
Msimbazi	3	5	1	3	2	5	В	A/B or BAS
Lovu	3	5		3	1	5	С	A/B or BAS
Little aManzimtoti	2	1		3		3	Е	D
aManzimtoti	3	1		3	1	3	D	D
Mbokodweni	3	1		3		3	Е	D
Sipingo	3	1	5	3	1	5	F	Е
Durban Bay	5	5	5	4	5	5	Е	В
uMngeni	4	5	5	4	4	5	Е	D
Mhlanga	4	5	1	4	2	5	D	B*
uMdloti	4	1	3	4	2	4	D	C *
uThongathi	4	1		3	2	4	D	D*
Mhlali	4	5	2	4	3	5	С	В
Bob' Stream	1	1		1		1	В	В
Seteni	2	1		3		3	В	В
Mvoti	3	5		3	3	5	D	D
Mdlotane	4	5	5	4	1	5	В	A/B or BAS

Ectuary	National II	Regional Importance			Overall impor-	PES	REC	
Estuary	Biodiversity	Conservation	Macro- phytes	Fish	Birds	tance	FE9	REC
Nonoti	3	1	3	3		3	С	В
Zinkwasi	4	5	5	3	2	5	В	A/B or BAS

5 SOCIO-CULTURAL IMPORTANCE

The Socio-Cultural Importance (SCI) was generated by scoring each quaternary catchment based on the following features (Huggins et al., 2010):

Ritual Use: This was scored between 0 - 5. The question that was asked was "How much ritual use of the estuary takes place?" Typically this would be for ceremonial purposes or for spiritual/religious activities. An example would be areas used for traditional initiation purposes. Both intensity and significance of use are valued and the higher of the two scores is adopted. Intensity relates to the number of people likely to make use of the river for ritual use and significance relates to the degree to which the river is of critical importance to people.

Aesthetic Value: This was scored between 0 - 5. The question that was asked was "How important is the aesthetic value to people? Does the estuary add value to people's life as an object of natural beauty? Would changing flows detract from this value?" Both intensity and significance of appreciation are valued and the higher of the two scores is adopted. Intensity relates to the number of people likely to view the estuary and appreciate its aesthetic value and significance relates to the degree to which the estuary is of critical aesthetic importance to people.

Resource Dependence: This was scored between 0 - 5. This refers to the ecosystem services delivered by the estuary and peoples dependence on these components. This is usually a critical element of the SCI score and is designed to cater for estuary resource dependence by those who rely directly on such aspects for their survival. It should be noted that commercial or "for financial gain" usage of resources is excluded from consideration in this instance. Both intensity and significance of use are valued and the higher of the two scores is adopted. Intensity relates to the number of people likely to make use of the estuary for resource importance and significance relates to the degree to which the estuary is of critical importance to people. A sustainability modifier is allowed for.

Recreational Use: This was scored between 0 - 5. The question that was asked was "Does the estuary provide recreational facilities to people and would this be affected by changing flows?" Both intensity and significance of use are valued and the higher of the two scores is adopted Intensity relates to the number of people likely to make use of the estuary for recreational purposes and significance relates to the degree to which the estuary is of critical importance to people.

Historical/Cultural Value: This was scored between 0 - 5. The question that was asked was "Does the estuary have a strong cultural or historical value?" Both intensity and significance of use are valued and the higher of the two scores is adopted. Intensity relates to the number of people likely to appreciate the estuary for its historical or cultural significance and significance relates to the degree to which the estuary is of critical importance to people

Scores were then modified to reflect the adjudged importance of each component relative to the other. In the model the following mechanism for arriving at the final score has been adopted with a relative weighting for the importance within the context of the catchment. So "Ritual Use" has a weighting of 40 points, "Aesthetic Value" a weighting of 20 points, "Resource Dependence" a weighting of 100 points, "Recreational Use" a weighting of 50 points, and "Historical Cultural" Value a weighting of 75 points.

The final scores were then combined to generate an overall score between 0 and 5. The meaning of the score is as set out in Table 5.1 and Table 5.2 below.

SCI score	Category	Comment
0 - 0.99	VERY LOW	Of little or no socio-cultural importance.
1 - 1.99	LOW	Of some importance. PES not critical, but caution should be displayed with regard to negative impact on dependent communities.
2 - 2.99	MODERATE	Of moderate importance. PES should not be allowed to be negative affected without strong motivation.
3 - 3.99	нідн	Of high importance. A score in this range motivates for maintain or potentially positive change to PES.
4 - 5	VERY HIGH	Of extreme importance. A score in this range motivates for positive change to PES.

 Table 5.1
 Socio-Cultural Importance rating.

Table 5.2 Overall SCI scores for the Mvoti to Umzimkulu WMA estuaries.

Name	Ritual Use (0-5)	Aesthetic (0-5)	Resource Dependence (0-5)	Recreational Use (0-5)	Historical/ Cultural (0-5)	Ecosystem Services Score
Mtamvuna	3	4	2	4	3	2.89
Zolwane	1	2	1	2	1	1.25
Sandlundlu	1	3	1	3	1	1.49
Ku-Boboyi	2	3	1	3	2	1.89
Tongazi	2	3	2	3	2	2.25
Kandandhlovu	2	3	2	3	2	2.25
Mpenjati	2	5	2	3	4	2.91
Umhlangankulu	2	2	2	2	2	2.00
Kaba	2	2	2	4	2	2.35
Mbizana	3	3	2	3	3	2.65
Mvutshini	2	2	2	2	2	2.00
Bilanhlolo	2	2	2	4	2	2.35
Uvuzana	1	2	1	2	1	1.25
Kongweni	3	4	3	5	3	3.42
Vungu	3	3	2	4	3	2.82
Mhlangeni	2	3	2	4	2	2.42
Zotsha	2	3	2	2	2	2.07
Boboyi	1	3	1	2	1	1.32
Mbango	1	1	1	1	1	1.00
Umzimkulu	2	3	3	5	2	2.95
uMthente	2	3	2	3	2	2.25
Mhlangamkulu	2	3	2	3	2	2.25
Damba	2	4	2	3	2	2.32
Koshwana	2	3	2	2	2	2.07
Intshambili	1	3	1	1	1	1.14
Mzumbe	3	2	2	3	2	2.32
Mhlabatshane	3	4	3	4	3	3.25
Mhlungwa	4	2	2	4	4	3.16
Mfazazana	4	2	2	4	4	3.16
Kwa-Makosi	4	2	2	4	4	3.16

Name	Ritual Use (0-5)	Aesthetic (0-5)	Resource Dependence (0-5)	Recreational Use (0-5)	Historical/ Cultural (0-5)	Ecosystem Services Score
Mnamfu	4	2	2	4	4	3.16
Mtwalume	2	4	2	3	2	2.32
Mvuzi	2	3	2	2	2	2.07
Fafa	2	4	2	3	2	2.32
Mdesingane	2	5	2	2	2	2.21
Sezela	2	3	2	2	2	2.07
Mkumbane	2	3	2	4	2	2.42
uMuziwezinto	2	3	2	2	2	2.07
Nkomba	3	3	2	3	3	2.65
Mzimayi	3	3	2	3	3	2.65
Mpambanyoni	2	2	3	5	2	2.88
Mahlongwa	2	4	2	3	2	2.32
Mahlongwane	2	3	2	2	2	2.07
uMkhomazi	3	3	2	4	3	2.82
Ngane	2	2	2	3	2	2.18
Umgababa	3	3	2	3	3	2.65
Msimbazi	3	3	3	2	3	2.82
Lovu	2	4	2	4	2	2.49
Little aManzimtoti	2	4	2	2	2	2.14
aManzimtoti	3	2	2	4	2	2.49
Mbokodweni	3	2	2	4	2	2.49
Sipingo	2	2	1	2	2	1.65
Durban Bay	2	2	2	5	3	2.79
uMngeni	4	4	3	5	4	3.82
Mhlanga	3	4	3	4	3	3.25
uMdloti	3	4	2	3	3	2.72
uThongathi	2	3	2	3	2	2.25
Mhlali	1	4	1	2	1	1.39
Bob's Stream	1	3	1	1	1	1.14
Seteni	1	3	1	1	1	1.14
Mvoti	1	3	1	2	1	1.32
Mdlotane	1	5	1	3	1	1.63
Nonoti	2	5	2	2	2	2.21
Zinkwasi	3	5	2	4	2	2.70

A socio-economic goods and services assessment of the estuaries located in Mvoti to Umzimkulu WMA concluded that 14 of the 64 estuaries are deemed important. One estuary (Durban Bay) in particular was deemed to be very important due to the range of services provided. The 14 estuaries were ranked of moderate to high importance due to the following factors:

- **Recreational:** Estuaries ranked of importance with respect to recreational use of estuaries generally provided for ease of access, recreational facilities, good water flow and quality and also supported a large local resident population.
- **Ritual and Cultural:** Estuaries ranked of importance with respect to ritual and cultural use generally provided for ease of access, good water flow and quality, good aesthetic value and also supported a large local resident population.

- **Resource Use:** Estuaries ranked of importance with respect to resource use/dependant generally supported (1) subsistence fishing, (2) natural material harvesting (reeds, grasses etc.) and sand mining.
- Aesthetic: Estuaries with intact natural vegetation and limited urban development on the banks generally showed high aesthetic values.

6 WATER RESOURCE USE IMPORTANCE

The priority rating method consists of assigning a qualitative score to a river reach for four variables or factors that represent the status of the in-stream flow. The scores of the four variables are combined to determine an overall score in conjunction with the quality and confidence of the data on which the score is based. The scoring represents the importance of the river reach in terms of the water resource use. When the Water Resource Use Importance (WRUI) is integrated with the Integrated Environmental Importance, the resulting hotspots will guide the selection of the EWR determination method to be applied. Table 6.1 presents the meaning of the WRUI score.

Overall score	Descriptive evaluation
0	Very low
1	Low
2	Moderate
3	High
4	Very high

 Table 6.1
 Meaning of Water Resource Use Importance score.

Note: (#) The final EWR determination method depends on a combination of the water resource use rating and the ecological importance.

Table 6.2 provides a summary of the WRUI applicable to the estuaries of the Mvoti to Umzimkulu WMA.

Name	Use	Operational	Future development	Water Quality	WRUI
Mtamvuna	1	1	1	1	1
Zolwane	2	0	0	1	2
Sandlundlu	2	1	0	2	2
Ku-Boboyi	2	2	0	1	2
Tongazi	2	0	0	2	2
Kandandhlovu	3	2	0	1	3
Mpenjati	2	0	0	1	2
Umhlangankulu	2	1	0	2	2
Kaba	3	2	0	1	3
Mbizana	1	0	0	1	1
Mvutshini	2	2	0	1	2
Bilanhlolo	1	0	0	1	1
Uvuzana	2	0	0	1	2
Kongweni	2	2	0	2	2
Vungu	2	0	0	3	3
Mhlangeni	2	0	0	2	2
Zotsha	2	0	0	3	3
Boboyi	2	0	0	2	2
Mbango	2	1	0	3	3
Umzimkulu	2	0	0	2	2
uMthente	2	0	0	1	2
Mhlangamkulu	2	1	0	1	2
Damba	2	1	0	1	2

Table 6.2 WRUIscores for the estuaries of the Mvoti to Umzimkulu WMA.

Name	Use	Operational	Future development	Water Quality	WRUI
Koshwana	2	0	0	1	2
Intshambili	2	0	0	1	2
Mzumbe	1	0	0	1	1
Mhlabatshane	2	1	0	1	2
Mhlungwa	2	2	0	1	2
Mfazazana	2	0	0	1	2
Kwa-Makosi	2	0	0	1	2
Mnamfu	2	0	0	1	2
Mtwalume	2	0	0	1	2
Mvuzi	2	3	0	1	3
Fafa	2	1	0	1	2
Mdesingane	2	0	0	1	2
Sezela	3	3	0	1	3
Mkumbane	3	3	0	1	3
uMuziwezinto	3	3	0	3	3
Nkomba	2	0	0	1	2
Mzimayi	2	0	0	1	2
Mpambanyoni	2	1	0	1	2
Mahlongwa	2	0	0	1	2
Mahlongwane	2	0	0	2	2
uMkhomazi	2	0	4	1	4
Ngane	1	1	1	3	3
Umgababa	2	3	0	1	3
Msimbazi	1	0	0	1	1
Lovu	2	0	0	2	2
Little aManzimtoti	2	0	0	2	2
aManzimtoti	2	0	0	2	2
Mbokodweni	2	1	1	3	3
Sipingo	2	0	0	3	3
Durban Bay	3	4	0	4	4
uMngeni	4	4	3	4	4
Mhlanga	4	0	0	4	4
uMdloti	4	4	3	4	4
uThongathi	4	2	2	3	4
Mhlali	2	0	0	1	2
Bob's Stream	2	0	0	1	2
Seteni	2	0	0	1	2
Mvoti	3	0	4	1	4
Mdlotane	2	0	0	1	2
Nonoti	2	0	0	1	2
Zinkwasi	2	0	0	1	2

7 PRIORITY ESTUARIES- HOTSPOTS

Hotspots (priority estuaries with overall importance) are identified by comparing (or overlaying) Integrated Environmental Importance with Water Resource Use Importance. In the context used here, the hotspot represents an estuary with a high Integrated Environmental Importance which could be under threat due to its importance for water resource use. These hotspots usually represent areas which are already stressed or will be stressed in future. This assessment can therefore guide decision-making with regard to which areas are in need of detailed monitoring and EWR studies. Table 7.1 provides the detailed list for the estuaries of the WMA.

NAME	PES	Ecological Importance (rated 1- 5)	SCI (rated 0 - 5)	IEI (rated 1 - 5)	WRUI (rated 0-4)	Hotspot (rated 1- 4)
Mtamvuna	В	5	2.89	5	1	2
Zolwane	В	1	1.25	4	2	3
Sandlundlu	С	2	1.49	2	2	2
Ku-Boboyi	В	1	1.89	4	2	3
Tongazi	В	2	2.25	4	2	3
Kandandhlovu	В	2	2.25	4	3	4
Mpenjati	В	5	2.91	5	2	3
Umhlangankulu	С	3	2.00	3	2	2
Kaba	С	2	2.35	3	3	3
Mbizana	В	3	2.65	4	1	2
Mvutshini	В	1	2.00	4	2	3
Bilanhlolo	С	3	2.35	3	1	2
Uvuzana	С	1	1.25	2	2	2
Kongweni	D	2	3.42	2	2	2
Vungu	В	2	2.82	4	3	4
Mhlangeni	С	2	2.42	3	2	2
Zotsha	В	5	2.07	5	3	4
Boboyi	В	2	1.32	4	2	3
Mbango	E	2	1.00	1	3	2
Umzimkulu	В	5	2.95	5	2	3
uMthente	С	3	2.25	3	2	2
Mhlangamkulu	С	1	2.25	3	2	2
Damba	С	5	2.32	4	2	3
Koshwana	С	5	2.07	4	2	3
Intshambili	С	5	1.14	4	2	3
Mzumbe	С	3	2.32	3	1	2
Mhlabatshane	В	5	3.25	5	2	3
Mhlungwa	С	2	3.16	3	2	2
Mfazazana	С	5	3.16	4	2	3
Kwa-Makosi	В	5	3.16	5	2	3
Mnamfu	С	2	3.16	3	2	2
Mtwalume	С	3	2.32	3	2	2
Mvuzi	С	2	2.07	2	3	3
Fafa	С	4	2.32	3	2	2
Mdesingane	С	1	2.21	3	2	2

 Table 7.1
 Estuary hotspots in Mvoti to Umzimkulu WMA.

WP - 10679

Estuary Desktop EcoClassification: June 2013

NAME	PES	Ecological Importance (rated 1- 5)	SCI (rated 0 - 5)	IEI (rated 1 - 5)	WRUI (rated 0-4)	Hotspot (rated 1- 4)
Sezela	С	3	2.07	3	3	3
Mkumbane	С	2	2.42	3	3	3
uMuziwezinto	C	3	2.07	3	3	3
Nkomba	В	1	2.65	4	2	3
Mzimayi	C	2	2.65	3	2	2
Mpambanyoni	С	2	2.88	3	2	2
Mahlongwa	С	2	2.32	3	2	2
Mahlongwane	С	3	2.07	3	2	2
uMkhomazi	С	5	2.82	4	4	4
Ngane	С	2	2.18	3	3	3
Umgababa	С	5	2.65	4	3	4
Msimbazi	В	5	2.82	5	1	2
Lovu	С	5	2.49	4	2	3
Little aManzimtoti	E	2	2.14	2	2	2
aManzimtoti	D	3	2.49	2	2	2
Mbokodweni	E	3	2.49	2	3	3
Sipingo	F	3	1.65	5	3	4
Durban Bay	E	5	2.79	3	4	4
uMngeni	E	5	3.82	3	4	4
Mhlanga	D	5	3.25	3	4	4
uMdloti	D	4	2.72	3	4	4
uThongathi	D	4	2.25	3	4	4
Mhlali	С	5	1.39	4	3	4
Bob's Stream	В	1	1.14	4	2	3
Seteni	В	2	1.14	4	2	3
Mvoti	D	5	1.32	3	4	4
Mdlotane	В	5	1.63	5	2	3
Nonoti	С	3	2.21	3	2	2
Zinkwasi	В	5	2.70	4	2	3

Following the process described above the thirteen estuaries emerge as hotspots (see Table 7.2).

Table 7.2	Mvoti to Umzimkulu WMA Estuary hotspots with a 4 rating.
-----------	--

			-				
NAME	PES	Ecological Importance (rated 1- 5)	SCI (rated 1- 5)	WRUI (rated 0- 4)	EWR Status		
Kandandhlovu	В	2	2.25	3	Potential focus		
Vungu	В	2	2.82	3	EWR done		
Zotsha	В	5	2.07	3	EWR done		
uMkhomazi	С	5	2.82	4	The focus of this study		
Umgababa	С	5	2.65	3	Potential focus		
Sipingo	F	3	1.65	3	Diversions of catchment for airport development		
Durban Bay	E	5	2.79	4	Harbour, non-flow related Issues		
uMngeni	E	5	3.82	4	EWR done		
Mhlanga	D	5	3.25	4	EWR done		

NAME	PES	Ecological Importance (rated 1- 5)	SCI (rated 1- 5)	WRUI (rated 0- 4)	EWR Status
uMdloti	D	4	2.72	4	EWR done
uThongathi	D	4	2.25	4	EWR done
Mhlali	С	5	1.39	3	Potential focus
Bob's Stream	В	1	1.39	3	Artefact of hydrological modelling
Mvoti	D	5	1.32	4	The focus of this study

Of these thirteen systems, six (the Vungu, Zotsha, uMngeni, Mhlanga, uMdloti and uThongathi estuaries) have been evaluated as part of previous EWR studies. Durban Bay and the Isipingo estuary are in a very poor condition as a result of major infrastructure developments (port and airport development respectively). It is recommended that remedial action be taken to improve their health status to a D Category preferably via the implementation of the Estuary Management Plans currently being developed under the National Environmental Management: Integrated Coastal Management Act (No. 24 of 2008). They are not however seen as top-priority systems for EWR studies in the short term.

Existing and future water resource developments on the Mvoti and uMkhomazi estuaries are driving their selection as the focus areas forestuaryassessments. They are presently designated for Intermediate EWR level studies. However, there is some concern that the Mvoti Estuary may already be in an E Category due to water resource development, poor water quality and sand-mining. While this decline in health needs to be addressed it may be possible to identify the required actions in a rapid-level assessment and rather invest the resources (e.g. field investigations) available in the remaining hotspots identified.

Of the Mhlali, Umgababa and Kandandhlovu estuaries, the Mhlali and Umgababa are deemed the more ecologically significant. The recommendation, therefore, is that some of the resources of this study be directed towards those two systems, with the Umgababa the most likely study area for a Rapid EWR assessment.

Table 7.3 provides a summary of all the Mvoti to Umzimkulu WMA estuaries that have a hotspot rating of 3 and are deemed of high ecological or conservation importance (i.e. rating 5).

Estuary	PES	Ecological Importance (rated 1- 5)	SCI (rated 1- 5)	WRUI (rated 0- 4)	EWR Status
Mpenjati	В	5	2.91	2	
Umzimkulu	В	5	2.95	2	EWR done
Damba	С	5	2.32	2	
Koshwana	С	5	2.07	2	
Intshambili	С	5	1.14	2	
Mhlabatshane	В	5	3.25	2	
Mfazazana	С	5	3.16	2	
Kwa-Makosi	В	5	3.16	2	
Mahlongwa	С	5	2.32	2	
Mahlongwane	С	5	2.07	2	
Lovu	С	5	2.49	2	
Mdlotane	В	5	1.63	2	
Zinkwasi	В	5	2.70	2	

 Table 7.3
 Mvoti to UmzimkuluWMA Estuary hotspots with a 3 rating.

Note:

The degree to which this Mvoti to Umzimkulu WMA flow requirement study can address the hotspots listed above is seriously hampered by the lack of long-term monitoring data (e.g. 5 to 10 years of continuous river inflow and water level data) in the study area. Without the supporting information, critical aspects such as river flow ranges that drive estuary mouth state and related water quality conditions cannot be resolved with some degree of confidence.

Critical data, i.e. continuous water level recorder data, for high confidence EWR assessments are only available for the following estuaries: uMkhomazi (U1T008), Mvoti (U4T011), uThongathi (U3T008), uMdloti (U3T009), and Mlanga (U3T010). Flow data are only available for the first four estuaries.Therefore, while all estuaries in the catchment are deemed ecologically and socially significant, and sensitive to water resources development, not all of them are under the same degree of pressure. The relevant government departments are therefore strongly urged to invest in the long-term monitoring programmes required to undertake higherlevel confidence EWR studies on the identified systems.

8 EWR RECOMMENDATIONS

8.1 EWR RECOMMENDATIONS

Of the 64 estuaries occurring in the WMA, 30% (19 estuaries) had significant flow related pressures on them, while 78% (50 estuaries) were under significant water quality pressure (Table 8.1). More than 90% (58 estuaries) had undergone significant habitat destruction. All of the estuaries could benefit from some remedial actions and more proactive management of the main vectors of change.

In some of the systems, additional water resource development would be possible, as long as the baseflow (low flow regime) is maintained, e.g. the inflowing river can be targeted for off-channel development or runoff river abstraction. The majority of the catchments in the region are small and linked to temporarily open/closed estuaries that require a high percentage of the natural runoff to maintain their required condition. Any increase or decrease in runoff to this type of system rapidly leads to changes in mouth state and related ecological degradation.

It should also be noted that the majority of theseestuary mouths close from time to time and are therefore very sensitive to nutrient loading from the catchment or direct surrounding environment. The assessment of nutrient dischargesfrom WWTWs into an estuary should consider the impact of this on the receiving environment; in this case an estuary, rather than relying on adherence to permitted discharge levels. In the case of estuaries it appears that either general or special standards are applied to the waste water streams and the impact of the associated nutrients and any organic material on the estuary appears not to be considered. The small estuaries of the Mvoti to Umzimkulu WMA, during closure periods, will retain and accumulate nutrients with consequent impacts on water quality and on the microalgae and macrophytes, with cascading ripple effects on all other trophic levels.

Therefore neither general nor special standards are sufficient to prevent a deterioration in overall estuarine health in intermittently open estuaries and the application of a receiving water quality evaluation is advocated when assessing the impacts of discharges on these systems. It is recommended that consideration should be given to the advisability of using intermittently open estuaries as conduits for waste water.

Table 8.1 Estuaries EWR and recommendations

ESTUARY	nMAR ^{*1}	pMAR ^{⁺2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION
Mtamvuna	275.19	239.49	В	A or BAS	5				5-10%	Flow modification, water quality, some habitat destruction
Zolwane	2.19	2.31	В	В	3					
Sandlundlu	5.07	5.00	С	С	3			Х		
Ku-Boboyi	1.00	0.99	В	В	2					
Tongazi	7.00	7.23	В	В	3		Х	Х		
Kandandhlovu	1.53	1.60	В	В	3		Х	Х		
Mpenjati	23.61	23.55	В	A or BAS	5		х	Х		Water quality, habitat destruction
Umhlangankulu	2.87	2.87	С	С	3		х	Х		
Kaba	3.15	3.07	С	С	3		х	х		
Mbizana	36.30	35.52	В	В	3			х	<5%	
Mvutshini	1.66	1.63	В	В	3		х	х		
Bilanhlolo	5.02	4.98	С	С	3		х	Х		
Uvuzana	1.05	1.05	С	С	3		х	Х		
Kongweni	1.95	2.95	D	D	3	Х	х	Х		
Vungu	27.79	28.88	В	В	3		Х			
Mhlangeni	9.29	9.56	С	С	3		х	Х		
Zotsha	15.74	16.25	В	A/B or BAS	5		х	х		Water quality, habitat destruction
Boboyi	8.25	8.03	В	В	3		х	х		
Mbango	3.00	7.30	Е	D	3	х	x	х		Flow modification, very poor water quality, severe habitat destruction

ESTUARY	nMAR ^{⁺1}	pMAR ^{⁺2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION
Umzimkulu	1452.49	1199.50	В	A/B or BAS	5				5-10%	Poor water quality, habitat destruction, medium-high fishing pressure
uMthente	12.07	11.14	С	С	3			х		
Mhlangamkulu	2.06	1.73	С	С	4	х		х		
Damba	4.56	3.85	С	A/B or BAS	5	х		х		Flow modification, habitat destruction
Koshwana	2.06	1.96	С	A/B or BAS	5	x	х	x		Flow modification, habitat destruction
Intshambili	6.48	4.86	С	A/B or BAS	5	x	х	x		Flow modification, poor water quality, some habitat destruction
Mzumbe	58.53	53.74	С	С	3		х	х	<5%	
Mhlabatshane	6.46	6.48	В	A/B or BAS	5			x		Significant flow modification, some habitat destruction
Mhlungwa	5.78	5.67	С	С	3		х	х		
Mfazazana	2.77	2.57	С	A/B or BAS	5		х	x		Flow modification, poor water quality, habitat destruction
Kwa-Makosi	3.23	3.03	В	A/B or BAS	5			x		Some habitat destruction
Mnamfu	3.08	2.88	С	С	3		Х	х		
Mtwalume	57.60	42.78	С	С	3		х	х	<5%	
Mvuzi	1.65	1.55	С	С	3		х	х		
Fafa	46.45	37.64	С	С	4	х	х	х	<5%	
Mdesingane	2.02	2.02	С	С	3		Х	х		
Sezela	3.92	3.67	С	С	3		Х	х		
Mkumbane	3.79	3.54	С	С	3		Х	х		
uMuziwezinto	23.17	20.09	С	С	3	X	Х	Х		

ESTUARY	nMAR ^{*1}	pMAR ^{*2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION
Nkomba	0.69	0.69	В	В	1		х	х		
Mzimayi	6.15	4.95	С	С	3	Х	х	х		
Mpambanyoni	60.06	54.94	С	С	3		х	x	<5%	
Mahlongwa	13.76	13.18	С	A/B or BAS	5		х	x		Medium fishing pressure, poor water quality, habitat destruction
Mahlongwane	2.69	2.93	С	A/B or BAS	5		х	x		Poor water quality, significant habitat destruction
uMkhomazi	1077.74	926.05	С	В	5	х	х	x	5-10%	Significant flow reduction, poor water quality, habitat destruction
Ngane	3.83	4.30	С	С	3		х	x		
Umgababa	10.56	9.58	С	A/B or BAS	5	х		x		Flow modification, poor water quality, habitat destruction
Msimbazi	10.04	10.34	В	A/B or BAS	5		х	x		Habitat destruction
Lovu	105.84	73.46	С	A/B or BAS	5	х	х	x		Significant flow reduction, poor water quality, habitat destruction
Little aManzimtoti	2.84	6.62	Е	D	3	х	х	x		Significant flow increase, poor water quality, habitat destruction
aManzimtoti	5.30	6.75	D	D	3	х	х	x		Poor water quality, habitat destruction
Mbokodweni	31.52	53.54	E	D	3	х		x		Very significant flow modification, very poor water quality, severe habitat destruction (restoration of the existing mouth and lower reaches of the estuary required).
Sipingo	89.85	9.48	F	E	5	Х	х	x		Very significant flow modification, very poor water quality, severe habitat destruction
Durban Bay	36.33	63.44	E	D	5	X	x	x		High fishing pressure, significant flow modification, poor water quality, severe habitat destruction (port development), reduced food availability
uMngeni	671.30	262.68	Е	D	5	х	х	x		Significant flow modification, very poor water quality, severe habitat destruction
Mhlanga	13.34	22.33	D	B*	5	Х	Х	Х		Significant flow modification, poor water quality, habitat

ESTUARY	nMAR ^{*1}	pMAR ^{*2}	PES	REC	ECOLOGICAL & CONSERVATION IMPORTANCE	FLOW	WATER QUALITY	NON-FLOW	POTENTIAL FOR WATER RESOURCE DEVELOPMENT	ASPECTS THAT NEEDS TARGETING FOR RESTORATION/REHABILITATION	
										destruction	
uMdloti	85.78	71.87	D	С*	4		х	Х		Flow modification, poor water quality, habitat destruction	
uThongathi	70.77	71.16	D	D*	4		х	х		Very poor water quality, severe habitat destruction	
Mhlali	56.26	54.22	С	В	5		х	х	<5%	Poor water quality, habitat destruction	
Bob's Stream	0.53	0.53	В	В	1		х	х			
Seteni	1.42	1.42	В	В	3		х	х			
Mvoti	420.00	314.00	D	D	5		х	х	<5%	Poor water quality, habitat destruction	
Mdlotane	6.04	5.85	В	A/B or BAS	5		х			Water quality, some habitat destruction	
Nonoti	36.24	34.74	С	В	3		х	х	<5%	Poor water quality, some habitat destruction	
Zinkwasi	14.49	14.04	В	A/B or BAS	5		x	х		Habitat destruction	

*1 - nMAR: Natural MAR

*2 - pMAR: Present day MAR

8.2 ESTUARY LONG-TERM MONITORING REQUIREMENTS IN SUPPORT OF HIGHER LEVEL EWR STUDIES

Recommended minimum monitoring requirements to ascertain impacts of changes in freshwater flow to the estuary and any improvement or reductions therein are listed in Table 8.2.

Component	Monitoring action	Temporal scale (frequency and when)	Spatial scale (no. stations)
	Record water levels	Continuous	At the mouth
Hydrodynamics	Measure freshwater inflow into the estuary	Continuous	Near head of estuary
	Aerial/Satellite photographs of estuary (spring low tide)	Every 3 years	Entire estuary
Sediment	Bathymetric surveys: Series of cross-section profiles and a longitudinal profile collected at fixed 200-500 m intervals, but in more detail in the mouth (every 100m). The vertical accuracy should be about 5 cm.	Every 3 years	Entire estuary
dynamics	Set sediment grab samples (at cross section profiles) for analysis of particle size distribution (PSD) and origin (i.e. using microscopic observations)	Every 3 years (with invert sampling)	Entire estuary
	Water quality (e.g. system variables (e.g. pH, oxygen, turbidity), nutrients and toxic substances) measurements on river water entering at the head of the estuary	Monthly continuous	Close proximity to head of estuary
	 Longitudinal salinity and temperature profiles (in situ) collected over a spring and neap tide during high and low tide at: end of low flow season (i.e. period of maximum seawater intrusion) peak of high flow season (i.e. period of maximum flushing by river water) 	Seasonally every year	Entire estuary (3-10 stations)
Water quality	Water quality measurements (i.e. system variables, and nutrients) taken along the length of the estuary (surface and bottom samples)	Seasonal surveys, every 3 years or when significant change in water inflows or quality expected	Entire estuary (3-10 stations)
	Measurements of organic content and toxic substances (e.g. trace metals and hydrocarbons) in sediments along length of the estuary, where considered an issue.	Every 3- 5 years	Focus on sheltered, depositional areas
	Water quality (e.g. system variables, nutrients and toxic substances)measurements on near-shore seawater	Use available literature	Seawater adjacent to estuary mouth at salinity 35

 Table 8.2
 Recommended minimum requirements for long-term monitoring.

Component	Monitoring action	Temporal scale (frequency and when)	Spatial scale (no. stations)	
	Ground-truthed maps to document changes in macrophyte habitats over time;			
Macrophytes	Record number of macrophyte habitats, identification and total number of macrophyte species, number of rare or endangered species or those with limited populations documented during a field visit;	Summer survey every 3 years	Entire estuary	
	Document area covered by sensitive habitats i.e. mangroves and submerged macrophytes. Note extent of macroalgal blooms, floating aquatic macrophytes and area occupied by invasive vegetation			
	Ground-truthed maps;			
Macrophytes	Record number of plant community types, identification and total number of macrophyte species, number of rare or endangered species or those with limited populations documented during a field visit;	Summer survey every 3 years	Entire estuary	
	Record percentage plant cover, salinity, water level, sediment moisture content and turbidity on a series of permanent transects along an elevation gradient;			
	Take measurements of depth to water table and ground water salinity in supratidal marsh areas			
	Record species and abundance of zooplankton, based on samples collected across the estuary at each of a series of stations along the estuary;			
Invertebrates	Record benthic invertebrate species and abundance, based on subtidal and intertidal grab samples at a series of stations up the estuary, and counts of hole densities;	Summer and winter survey every 3 years	Entire estuary (3-10 stations)	
	Measures of sediment characteristics at each station			
Fish	Record species and abundance of fish, based on seine net and gill net sampling.	Summer and winter survey every 3 years	Entire estuary (3-10 stations)	
Birds	Undertake counts of all water associated birds, identified to species level.	Annual winter (Jul/Aug) and summer (Jan/Feb) surveys	Entire estuary	

9 **REFERENCES**

Begg G.W. 1978. The estuaries of Natal. Natal Town and Regional Planning Report 41: 657 pp.

Begg G.W. 1984. The estuaries of Natal.Part 2. Natal Town and Regional Planning Report 55: 631 pp.

Cyrus DP. 1988 Turbidity and other physical factors in Natal estuarine systems. Part I: Selected estuaries. Journal of the Limnological Society of Southern Africa 14: 60-71.

Cooper, J.A.G., Harrison, T.D., Ramm, A.E.L. & Singh, R.A. 1993. Refinement, enhancement and application of the Estuarine Health Index to Natal's Estuaries: Tugela-Mtamvuna: Executive report. Department of Environmental Affairs, Reference No. EFP.05.930402, Pretoria.

De Villiers S and Thiart C. 2007. The nutrient status of South African rivers: concentrations, trends and fluxes from the 1970s to 2005. South African Journal of Science 103: 343-349.

Department of Water Affairs (DWA) 2011.MzimkuluRiver Catchment Water Resource Study. WP9900. Estuarine Ecological Water Requirements. Report no.: MVOTI TO Mzimkulu WMA/T50/00/3009 Volume 6.

Department of Water Affairs (DWA) 2011. Reserve Determination studies for eThekwini Municipality's Waste Water Investigations: Rapid assessment of the Ecological Water Requirements for the eziMbokodweni Estuary. Report No. Report No. (still to be assigned by DWA) Pretoria.

Department of Water Affairs (DWA) 2011. Reserve Determination studies for eThekwini Municipality's Waste Water Investigations: Rapid assessment of the Ecological Water Requirements for the Little aManzimtoti Estuary. Report No. (still to be assigned by DWA) Pretoria.

Department of Water Affairs (DWA) 2011. Reserve Determination studies for eThekwini Municipality's Waste Water Investigations: Rapid assessment of the Ecological Water Requirements for the uMngeni Estuary. Report No. (still to be assigned by DWA) Pretoria.

Department of Water Affairs 2012 Rapid determination of the Environmental Water Requirements for the iZotsha Estuary.

Department of Water Affairs and Forestry (DWAF) 1996.South African Water Quality Guidelines. Volume 7: Aquatic Ecosystems. First Edition. Pretoria

Department of Water Affairs and Forestry (DWAF) 2003.Determination of the preliminary Ecological Reserve on a Rapid Level for the Mhlanga Estuary.CSIR Report No. ENV-S-C 2003-082, pp. 94.

Department of Water Affairs and Forestry (DWAF) 2008. Water Resource Protection and Assessment Policy Implementation Process. Resource Directed Measures for protection of water resources: Methodology for the Determination of the Ecological Water Requirements for Estuaries. Version 2. Pretoria.

Department of Water Affairs and Forestry (DWAF). 1995. South African Water Quality Guidelines for Coastal Marine Waters. Volume 1: Natural Environment. Pretoria.

Forbes, A.T. and Demetriades, N.T. (2009) Estuaries of Durban, Kwa-Zulu-Natal, South Africa. 2009 Report.Report for the environmental Management Department, eThekwini Municipality.

Harrison T.D., Cooper J.A.G. & Ramm A.E.L. 2000 State of South African estuaries. Geomorphology, Ichthyofauna, Water Quality and Aesthetics. State of the Environment Series Report No: 2. Department of Environmental Affairs and Tourism, South Africa. 127 pp.

Hiralal, P. 2001. The effects of sedimentation and turbidity on the distribution of the seagrass Zostera capensis Setchell in KwaZulu-Natal, South Africa.Masters of Science, Department of Botany in the Faculty of Science and Engineering, University of Durban-Westville.

Maree, R.C, Whitfield, A.K., and Quinn, N.W. 2003. Prioritisation of South African estuaries based on their potential importance to estuarine-associated fish species. WRC Report no TT 203/03.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858

Rajkaran, A. Adams, J.B. and Taylor, R. 2009. Historic and recent state (2006) of mangroves in small estuaries from Mlalazi to Mtamvuna in KwaZulu-Natal, South Africa. Southern Forests 71(4): 287-296.

Ryan, P.G., Cooper, J. Hockey, P.A.R. & Berruti, A. 1986.Waders (Charadrii) and other water birds on the coast and adjacent wetlands of Natal, 1980-1981.Lammergeyer 36: 1 - 33.

Siegfried, W.R. 1981. The estuarine avifauna of southern Africa. Pp. 223-250. In Day, J.H. (Ed) Estuarine ecology with particular reference to southern Africa. Balkema, Cape Town.

Turpie, J.K. & Clark, B.M. 2007. The health status, conservation importance, and economic value of temperate South African estuaries and development of a regional conservation plan. Report Turpie, J.K., Adams, J.B., Joubert, A., Harrison, T.D., Colloty, B.M., Maree, R.C., Whitfield, A.K., Wooldridge, T.H., Lamberth, S.J., Taljaard, S. & van Niekerk, L. 2002. Assessment of the conservation priority status of South African estuaries for use in management and water allocation. Water SA 28, 191-206.

Turpie, J.K., Wilson, G. and Van Niekerk, L. 2012. National Biodiversity Assessment 2011: National Estuary Biodiversity Plan for South Africa. Anchor Environmental Consulting, Cape Town. Report produced for the Council for Scientific and Industrial Research and the South African National Biodiversity Institute.

Van Niekerk, L. & Turpie, J.K. (eds). 2012. National Biodiversity Assessment 2011: Technical Report. Volume 3: Estuary Component. CSIR Report Number CSIR/NRE/ECOS/ER/2011/0045/B. Council for Scientific and Industrial Research, Stellenbosch.

10 APPENDIX A. LOCATION OF THE ESTUARIES OF THE MVOTI TO UMZIMKULU WMA

Appendix A (Table 10.1) provides the positions of the Mvoti to Umzimkulu WMA estuaries outlets (mouths). The lateral boundaries were taken as the 5 m contour above Mean Sea Level (MSL) along each bank.

IUA Code	NAME	X-Coordinate	Y-Coordinate
T40E-05869	Mtamvuna	30° 11' 37.2984"	31° 5′ 4.27200″
T40F-05953	Zolwane	30° 12' 17.5427"	31° 4' 31.5876"
T40F-05923	Sandlundlu	30° 13' 44.6087"	31 ⁰ 2' 33.4319"
T40F-05928	Ku-Boboyi	30° 14' 8.16359"	31 [°] 2' 4.77599"
T40F-05879	Tongazi	30° 15' 24.5915"	31° 0' 41.1732"
T40F-05884	Kandandhlovu	30° 16' 9.45480"	30° 59' 50.625"
T40F-05770	Mpenjati	30 ⁰ 17' 2.78160"	30° 58' 25.348"
T40F-05839	Umhlangankulu	30° 18' 11.0699"	30° 56' 43.490"
T40F-05820	Kaba	30° 18' 32.3604"	30° 56' 9.4776"
T40F-05666	Mbizana	30° 20' 5.22239"	30° 54' 31.103"
T40G-05773	Mvutshini	30° 20' 49.6895"	30° 53' 38.684"
T40G-05722	Bilanhlolo	30° 20' 56.1479"	30 ⁰ 53' 24.687"
T40G-05768	Uvuzana	30 ⁰ 21' 32.2415"	30° 52' 42.254"
T40G-05739	Kongweni	30 ⁰ 22' 21.8495"	30° 51' 41.288"
T40G-05616	Vungu	30° 23' 43.1303"	30° 50' 11.345"
T40G-05644	Mhlangeni	30 ⁰ 24' 20.1168"	30° 49' 12.810"
T40G-05577	Zotsha	30 ⁰ 25' 25.1687"	30° 47' 22.322"
T40G-05573	Boboyi	30° 26' 21.2531"	30° 46' 14.509"
T40G-05611	Mbango	30° 26' 51.6084"	30° 45' 27.745"
T52M-05547	Umzimkulu	30° 27' 29.8800"	30° 44' 23.398"
U80A-05470	uMthente	30° 28' 54.1019"	30° 42' 34.534"
U80A-05527	Mhlangamkulu	30° 29' 54.0420"	30° 41' 17.394"
U80A-05461	Damba	30° 30' 37.5335"	30° 40' 20.863"
U80A-05496	Koshwana	30° 31' 2.27280"	30° 39' 37.137"
U80A-05456	Intshambili	30° 32' 11.5223"	30° 38' 13.938"
U80C-05448	Mzumbe	30° 32' 52.0116"	30° 36' 50.133"
U80D-05375	Mhlabatshane	30° 34' 17.0363"	30° 35' 4.1208"
U80D-05361	Mhlungwa	30° 34' 59.6459"	30° 33' 38.926"
U80D-05374	Mfazazana	30° 36' 25.4339"	30° 31' 54.534"
U80D-05345	Kwa-Makosi	30° 36' 36.8496"	30° 31' 33.085"
U80D-05327	Mnamfu	30 ⁰ 37' 28.9991"	30° 30' 30.272"
U80F-05270	Mtwalume	30° 38' 8.16000"	30° 29' 6.6300"
U80G-05302	Mvuzi	30° 38' 51.4104"	30 ⁰ 28' 11.276"
U80G-05097	Fafa	30° 39' 13.0068"	<i>30⁰ 27' 24.073"</i>
U80H-05229	Mdesingane	30° 40' 17.7275"	30 ⁰ 25' 33.772"
U80H-05202	Sezela	30° 40' 39.8747"	<i>30[°] 24' 54.046"</i>
U80H-05186	Mkumbane	30° 40' 58.2060"	<i>30[°] 24' 20.185"</i>
U80H-05109	uMuziwezinto	30° 42' 32.9219"	30° 22' 3.5075"

Table 10.1 The mouth positions of the Mvoti to Umzimkulu WMA estuaries

IUA Code	NAME	X-Coordinate	Y-Coordinate
U80H-05120	Nkomba	30° 43' 13.3608"	30 ⁰ 21' 10.357"
U80H-05120	Mzimayi	30 ⁰ 43' 38.3448"	30 ⁰ 20' 47.292"
U80K-04952	Mpambanyoni	30 ⁰ 45' 33.4655"	30° 16' 49.432"
U80L-05020	Mahlongwa	30 ⁰ 45' 50.1336"	30° 16' 8.8968"
U80L-05056	Mahlongwane	30 ⁰ 47' 37.4424"	30° 13' 30.478"
U10M-04746	uMkhomazi	30 ⁰ 48' 13.9248"	30° 12' 9.3203"
U70E-05010	Ngane	30 ⁰ 49' 1.67159"	30° 10' 43.824"
U70E-04974	Umgababa	30° 49' 50.6171"	30 ⁰ 9'20.4120"
U70E-04942	Msimbazi	30° 50' 51.5724"	30° 7' 46.2863"
U70D-04905	Lovu	30 ⁰ 51' 27.2700"	30° 6' 19.5552"
U70F-04893	Little aManzimtoti	30° 52′ 23.7395″	30 [°] 4' 40.9152"
U70F-04845	aManzimtoti	30 ⁰ 53' 4.71480"	30° 3' 30.8159"
U60E-04792	Mbokodweni	30° 56' 12.4367"	30° 0' 34.9524"
U60E-04827	Sipingo	30 ⁰ 57' 4.53959"	29 ⁰ 59' 45.229"
U60F-04684	Durban Bay	31 ⁰ 3.' 45.0288"	29 ⁰ 51' 58.085"
U20M-04543	uMngeni	31 ⁰ 2.' 33.4031"	29 ⁰ 48' 30.585"
U30B-04498	Mhlanga	31° 6.' 5.30279"	29 ⁰ 42' 10.832"
U30B-04475	uMdloti	31 ⁰ 7.' 44.9328"	29 ⁰ 39' 2.1348"
U30D-04315	uThongathi	31° 11' 5.58600"	29 ⁰ 34' 24.275"
U30E-04207	Mhlali	31° 16' 41.4119"	29º 27' 36.575"
U30E-04207	Bob's Stream	31° 17' 41.0496"	29º 26' 16.717"
U30E-04256	Seteni	31° 18' 10.4544"	29 ⁰ 25' 45.667"
U40J-03998	Mvoti	31 ⁰ 20' 5.47439"	29 ⁰ 23' 30.775"
U50A-04141	Mdlotane	31 ⁰ 22' 25.7844"	29 ⁰ 21' 8.6507"
U50A-04021	Nonoti	31 ⁰ 24' 25.4880"	29° 19' 7.8852"
U50A-04018	Zinkwasi	31° 26' 36.5207"	29° 16' 53.724"

11 APPENDIX B. DETAILED METHOD AND SCORES FOR INDIVIDUAL ESTUARY COMPONENTS

Appendix B provides the detailed methods and scores for the abiotic and biotic components of the *Mvoti* to Umzimkulu WMA estuaries.

11.1 HYDROLOGY

11.1.1 Hydrological modelling approach

The hydrology in this catchment was modelled using three different models:

- Water Resources Yield Model
- WRSM2000
- Water Resources Modelling Platform

Where existing models were setup and calibrated the data was sourced otherwise the assessment relied on the outputs from Water Research Commission WRC K5/2187: The vulnerability of South Africa's estuaries to future water resource development based on their resilience to provide and assessment of modification in flows to the estuaries of Mvoti to Umzimkulu WMA.

11.1.2 The water resources yield model

The Water Resources Yield Model, developed and maintained by the Department of Water Affairs, has been set up for many of the major basins in South Africa. The intention is therefore to use these model setups wherever they are available, i.e. where they have modelled the whole catchment down to the estuary. The only missing component with existing Water Resources Yield Model setups is that these models do not have a function to produce cumulative natural flow time series. This can be overcome by developing an application to mine the hydrological data and compute this separately.

While the above list of models only accounts for 8 out of the 280 estuaries, it covers more than half of the catchment areas to be modeled by including the Orange catchment.

11.1.3 WRSM2000

As part of the WR 2005 project to update the hydrology for the whole of South Africa, the WRSM2000 model setups were updated for the whole of the country. These could be used to generate natural hydrology and, with some effort, also present hydrology. One of the problems to be overcome is that WRSM2000 model setup have historic water use data and not present day water use data. Hence any WRSM2000 model run using the existing setup would not produce stationery records. In order to produce a stationery record, all the water use time series would need to be changed to present day time series.

WRSM200 is however a source of national water use data. Most important, it contains estimated irrigated areas in each quaternary catchment. This was used to estimate irrigation use at quaternary scale.

11.1.4 The Water Resources Modelling Platform

The Water Resources Modelling Platform (WReMP), developed largely by IWR Water Resources with input from the Institute of Water Research and the University of Pretoria, is similar to WRYM in that it is a time series simulation model. It can therefore produce the reference and present day time series required of this Estuaries project. The main motivation for the development of WReMP was to develop a Windows based water resources model. At the time of it development WRYM was a dos based model and many practitioners still use WRYM in Dos mode.

The advantage of WReMP over WRYM for this particular application of modeling a large number of the estuaries in Mvoti to Umzimkulu WMA, is that this model has been structured to interface with databases referenced to South Africa's quaternary catchments. It is therefore relatively simple to set up models simply by indicating the quaternary catchments included in the setup and the relationship between these setups. In addition to the above, there are numerous existing WReMP setups which can be used to model reference and present day hydrology.

11.1.5 Summary of the changes in the hydrological components that drive condition in the Mvoti to Umzimkulu WMA estuaries.

Table 11.1 provides a summary of the hydrological characteristics the rivers that flow into the Mvoti to Umzimkulu WMA estuaries. It lists the catchment area (km²), natural MAR (MCM/a), present MAR (MCM/a), the percentage change in MAR, and percentage change in the baseflows (the 25 percentile was use as indicative of baseflows). As no flood hydrology was available, change in MAR was taken as indicative of modifications to the flood regime. The overall hydrology score was calculated as:

Hvdroloav score = ((% MAR remaining x 0.4	4) + (% Baseflov	vs remaining x 0.6)

Estuary	Catchment area (km²)	Natural MAR (MCM/a)	Present MAR (MCM/a)	% MAR change	% baseflow change	MAR score	Baseflow Score	Hydrology Score
Mtamvuma	1 586.0	275.2	239.5	-13.0	20.0	87	80	В
Zolwane	8.3	2.2	2.3	5.8	0.0	94	100	Α
Sandhlunlu	19.2	5.1	5.0	-1.5	-8.8	98	91	А
Kuboyoyi	3.8	1.0	1.0	-0.6	0.0	99	100	А
Tongazi	26.4	7.0	7.2	3.4	4.3	97	96	А
Kandanhlovu	5.8	1.5	1.6	4.4	0.0	96	100	А
Mpenjati	89.6	23.6	23.5	-0.3	-2.6	100	97	А
Umhlangankul u	10.9	2.9	2.9	0.2	-10.5	100	89	А
Kaba	12.1	3.1	3.1	-2.3	-5.0	98	95	А
Mbizana	137.9	36.3	35.5	-2.1	-8.4	98	92	Α
Mvuthsini	6.6	1.7	1.6	-1.4	12.5	99	88	А
Bilanhlolo	19.8	5.0	5.0	-0.9	-6.1	99	94	А
Umvazana	4.2	1.0	1.0	0.0	0.0	100	100	А
Kongweni	7.9	1.9	3.0	51.6	91.7	48	8	E

Estuary	Catchment area (km²)	Natural MAR (MCM/a)	Present MAR (MCM/a)	% MAR change	% baseflow change	MAR score	Baseflow Score	Hydrology Score
Vungu	110.0	27.8	28.9	3.9	15.7	96	84	В
Mhlangeni	37.2	9.3	9.6	2.9	-35.0	97	65	В
Zotsha	62.5	15.7	16.2	3.2	0.0	97	100	В
Boboyi	32.1	8.2	8.0	-2.6	22.6	97	77	В
Mbango	11.8	3.0	7.3	143.7	552.6	-44	0	D
Umzimkulu	6 678.0	1 452.5	1 175.1	-19.1	-37.6	81	62	В
Mtentwini	64.6	12.1	11.1	-7.7	-35.0	92	65	В
Mhlangamkul o	11.2	2.1	1.7	-16.1	-73.3	84	27	D
Domba	24.4	4.6	3.9	-15.6	-75.7	84	24	D
Koshwani	11.2	2.1	2.0	-5.0	-75.7	95	24	D
Inhshambili	34.4	6.5	4.9	-24.9	-82.7	75	17	D
Mzumbe	536.2	58.5	53.7	-8.2	-20.6	92	79	В
Mhlabatshane	33.9	6.5	6.5	0.3	-3.8	100	96	Α
Mhlungwa	29.7	5.8	5.7	-1.9	-10.2	98	90	Α
Mfazazana	14.2	2.8	2.6	-7.2	-36.4	93	64	В
KwaMakozi	16.6	3.2	3.0	-6.3	-23.1	94	77	В
Mnamfu	15.8	3.1	2.9	-6.3	-75.7	94	24	С
Mtwalume	563.0	57.6	42.8	-25.7	-73.9	74	26	В
Mvuzi	8.6	1.6	1.5	-6.1	-13.3	94	87	В
Fafa	242.5	46.4	37.6	-19.0	-40.6	81	59	С
Mdesingane	11.8	2.0	2.0	0.0	-10.5	100	89	Α
Sezela	22.5	3.9	3.7	-6.4	-23.5	94	76	В
Mkumbane	21.7	3.8	3.5	-6.6	-20.6	93	79	В
uMuziwezinto	134.4	23.2	20.1	-13.3	-51.0	87	49	С
Nkomba	4.0	0.7	0.7	0.0	-10.5	100	89	А
Mzimayi	35.3	6.1	4.9	-19.5	-35.7	80	64	С
Mpambanyoni	539.8	60.1	54.9	-8.5	-15.6	91	84	В
aMahlongwa	87.5	13.8	13.2	-4.3	-14.6	96	85	В
Mahlangwana	17.3	2.7	2.9	9.1	17.4	91	83	В
uMkhomazi	4 398.0	1 077.7	926.1	-14.1	-52.1	86	48	С
Ngane	12.6	3.8	4.3	12.2	26.8	88	73	В
Umgababa	35.2	10.6	9.6	-9.3	-36.2	91	64	С
Msimbazi	32.9	10.0	10.3	3.0	2.8	97	97	Α
Lovu	951.0	105.8	73.5	-30.6	-62.1	69	38	D
Little aManzimtoti	17.0	2.8	6.6	132.5	188.5	-33	-88	D
aManzimtoti	32.0	5.3	6.7	27.4	40.0	73	60	С
Mmbokotwini	243.0	31.5	53.5	69.8	133.7	30	-34	С
Sipingo*	11.2**	89.85	9.48	90	95	10	5	F
Durban Bay	229.0	36.3	63.4	74.6	90	25	10	F
uMngeni	4 416.0	671.3	262.7	-60.9	-34.0	39	66	D
Mhlanga	84.4	13.3	22.3	67.5	105.0	33	-5	D
uMdloti	486.0	85.8	71.9	-16.2	-33.0	84	67	В

Estuary	Catchment area (km²)	Natural MAR (MCM/a)	Present MAR (MCM/a)	% MAR change	% baseflow change	MAR score	Baseflow Score	Hydrology Score
uThongathi	408.0	70.8	71.2	0.6	5.0	99	95	Α
Mhlali	247.0	56.3	54.2	-3.6	-24.6	96	75	В
Bobstream	2.3	0.5	0.5	0.0	0.0	100	100	Α
Seteni	6.2	1.4	1.4	0.0	0.0	100	100	А
Mvoti**	2 751.0	420.0	314.0	-25.2	25.0	75	75	С
Mdlotane	29.8	6.0	5.8	-3.2	0.0	97	100	А
Nonoti	177.0	36.2	34.7	-4.1	-15.3	96	85	В
Zinkwazi	71.4	14.5	14.0	-3.2	0.0	97	100	Α

*Sipingo catchment area used to be 45 km²

**Mvoti Estuary hydrology was not modelled as part of the desktop assessment and is based on the results of the historical EFR Study. To be updated as part of this study.

11.2 HYDRODYNAMICS

Estuary mouth state (used as proxy for hydrodynamics) was evaluated based on percentage change in MAR, percentage change in baseflows, the degree of connectivity to the marine environment, and the average depth of the estuary. Table 11.2 provides a summary of the changes in mouth state of the Mvoti to Umzimkulu WMA estuary health assessment.

Name	% Mouth Open	Depth	Hydrodynamics	Artificial Breaching
Mtamvuna	95	3	А	?
Zolwane	81	2	Α	Y
Sandlundlu	60	2	Α	Y
Ku-Boboyi	53	1	В	
Tongazi	91	2	Α	
Kandandhlovu	54	1	В	
Mpenjati	71	2	Α	Y
Umhlangankulu	33	2	Α	Y
Kaba	27	1	Α	
Mbizana	54	1	Α	?
Mvutshini	42	1	В	Y
Bilanhlolo	47	1	Α	Y
Uvuzana	32	1	Α	Y
Kongweni	49	2	E	Y
Vungu	96	15	Α	
Mhlangeni	55	1	В	Y
Zotsha	76	2	С	Y

Table 11.2 An assessment of the hydrodynamics (mouth state) of the Mvoti to UmzimkuluWMA estuaries.

Name	% Mouth Open	Depth	Hydrodynamics	Artificial Breaching
Boboyi	94	1	Α	
Mbango	86	2	D	
Umzimkulu	97	3	В	Y
uMthente	40	2	В	
Mhlangamkulu	19	2	С	
Damba	28	1	D	Y
Koshwana	26	1	С	
Intshambili	42	1	С	
Mzumbe	74	1	В	
Mhlabatshane	50	2	Α	
Mhlungwa	29	1	Α	
Mfazazana	24	1	С	
Kwa-Makosi	37	1	В	
Mnamfu	42	1	С	
Mtwalume	71	1	С	
Mvuzi	23	2	С	
Fafa	45	1	В	Y
Mdesingane	58	1	Α	
Sezela	19	2	В	Y
Mkumbane	8	2	В	
uMuziwezinto	15	2	В	?
Nkomba	10	1	Α	
Mzimayi	20	1	В	
Mpambanyoni	78	1	Α	?
Mahlongwa	22	1	Α	Y
Mahlongwane	13	2	Α	?
uMkhomazi	99	2	Α	Y
Ngane	54	1	В	?
Umgababa	46	1	В	Y
Msimbazi	36	1	Α	
Lovu	77	1	С	Y
Little aManzimtoti	72	1	F	Y, water quality
aManzimtoti	44	1	С	Y
Mbokodweni	86	2	Е	Y, water quality
Sipingo	5	2	F	
Durban Bay	100	2	Α	
uMngeni	95	2	В	Y
Mhlanga	48	2	E	Y
uMdloti	40	1	С	Y
uThongathi	84	2	Α	Y
Mhlali	48	1	В	Y
Bob's Stream	20	1	Α	
Seteni	35	1	Α	
Mvoti	99	1	В	Y
Mdlotane	14	2	A	
Nonoti	18	2	Α	Y

Name	% Mouth Open	Depth	Hydrodynamics	Artificial Breaching
Zinkwasi	28	1	Α	Y

11.3 PHYSICAL HABITATS

Table 11.3 provides a summary of the changes in the physical habitat of the Mvoti to Umzimkulu WMA estuaries.

Name	Physical Habitat Condition	Mining	Bridges	Mouth	Breaching
Zinkwasi	С	Sand (1)			
Nonoti	С	Sand (1)			
Mdlotane	В				
Mvoti	D	Sand (5)			
Seteni	D				
Bob's Stream	D				
Mhlali	D	Sand (4)	Wier?		
uThongathi	D	Sand (2)	Bridge (S)		
uMdloti	С	Sand (3)	Bridge (s)		
Mhlanga	D		Bridge (S)		Y
uMngeni	E	Sand (2)	Bridge (S)	Mouth stabilised	Y
Durban Bay	F			Port	
Sipingo	F			Culverts	
Mbokodweni	D	Sand (8)	Bridge (S)	Mouth stabilised	Y, water quality
aManzimtoti	D	Sand (1)	Bridge (S)		Y
Little aManzimtoti	В		Bridge (S)		Y, water quality
Lovu	D	Sand (7)	Bridge (S)		Y
Msimbazi	С		Bridge (S)		
Umgababa	С		Bridge (S)		Y
Ngane	D		Bridge (S)		?
uMkhomazi	D	Sand (6)	Bridge (S)		Y
Mahlongwane	D		Bridge (S)		?
Mahlongwa	D	Sand (2)	Bridge (S)		Y
Mpambanyoni	D	Sand (1)	Bridge (S)		?
Mzimayi	С		Bridge (S)		
Nkomba	С		Bridge (S)		
uMuziwezinto	D		Bridge (S)		?
Mkumbane	С		Bridge (S)		
Sezela	D		Bridge (S)		Y
Mdesingane	D		Bridge (S)		
Fafa	D	Sand (2)	Bridge (S)		Y
Mvuzi	D		Bridge(s)		
Mtwalume	С	Sand (2)	Bridge(s)		
Mnamfu	С		Bridge(s)		
Kwa-Makosi	С		Bridge(s)		
Mfazazana	D		Bridge(s)		

Name	Physical Habitat Condition	Mining	Bridges	Mouth	Breaching
Mhlungwa	E		Bridge(s)		
Mhlabatshane	С		Bridge(s)		
Mzumbe	D	Sand (2)	Bridge(s)		
Intshambili	С		Bridge(s)		
Koshwana	D		Bridge(s)		
Damba	D		Bridge(s)		Y
Mhlangamkulu	С		Bridge(s)		
uMthente	D		Bridge(s)		
Umzimkulu	С	Sand (5)	Bridge(s)		Y
Mbango	D		Bridge(s)		
Boboyi	С		Bridge(s)		
Zotsha	В	Sand (2)	Bridge(s)		Y
Mhlangeni	D		Bridge(s)	Sandbag	Y
Vungu	В		Bridge(s)		
Kongweni	D		Bridge(s)		Y
Uvuzana	С		Bridge(s)		Y
Bilanhlolo	D		Bridge(s)		Y
Mvutshini	В		Bridge(s)		Y
Mbizana	С	Sand (1)	Bridge(s)		?
Kaba	С		Bridge(s)		
Umhlangankulu	D		Bridge(s)		Y
Mpenjati	D	Sand (2)	Bridge(s)		Y
Kandandhlovu	С		Bridge(s)		
Tongazi	В		Bridge(s)		
Ku-Boboyi	В		Bridge(s)		
Sandlundlu	С	Sand?	Bridge(s)	Mouth Stabilised	Y
Zolwane	А				Y
Mtamvuna	В		Bridge(s)		?

11.4 WATER QUALITY

11.4.1 Salinity

Salinity was evaluated based on estuary volume, relative depth, mouth state and percentage change in average monthly flow (Table 11.4). A volumetric relationship was used provide a guideline for scoring, but moderated with expert opinion.

Volume Inflow Volume estuary

If ratio >30 assumed estuary is nearly fresh (5 PSU); If ratio between 30 - 5 assumed estuary is brackish (>2m deep=15 PSU /<2m deep=10 PSU); If ratio >5 assumed estuary is saline (30 PSU > 50% open / 20 PSU < 50% open).

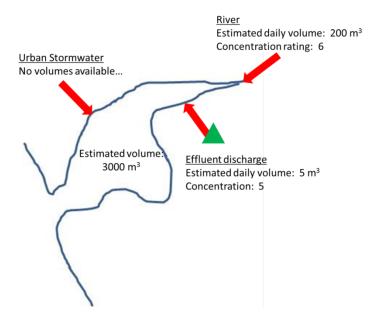
Table 11.4 An assessment of the salinity changes of the Mvoti to Umzimkulu WMA estuaries

Name	% Mouth Open	Depth	Salinity
Mtamvuna	95	3	Α

Name	% Mouth Open	Depth	Salinity
Zolwane	81	2	Α
Sandlundlu	60	2	Α
Ku-Boboyi	53	1	Α
Tongazi	91	2	Α
Kandandhlovu	54	1	В
Mpenjati	71	2	Α
Umhlangankulu	33	2	В
Kaba	27	1	Α
Mbizana	54	1	Α
Mvutshini	42	1	В
Bilanhlolo	47	1	Α
Uvuzana	32	1	Α
Kongweni	49	2	D
Vungu	96	15	Α
Mhlangeni	55	1	В
Zotsha	76	2	D
Boboyi	94	1	Α
Mbango	86	2	D
Umzimkulu	97	3	В
uMthente	40	2	В
Mhlangamkulu	19	2	В
Damba	28	1	В
Koshwana	26	1	В
Intshambili	42	1	В
Mzumbe	74	1	В
Mhlabatshane	50	2	Α
Mhlungwa	29	1	Α
Mfazazana	24	1	В
Kwa-Makosi	37	1	В
Mnamfu	42	1	В
Mtwalume	71	1	В
Mvuzi	23	2	С
Fafa	45	1	В
Mdesingane	58	1	Α
Sezela	19	2	В
Mkumbane	8	2	В
uMuziwezinto	15	2	В
Nkomba	10?	1	Α
Mzimayi	20	1	В
Mpambanyoni	78	1	Α
Mahlongwa	22	1	Α
Mahlongwane	13	2	Α
uMkhomazi	99	2	В
Ngane	54	1	В
Umgababa	46	1	В
Msimbazi	36	1	Α
Lovu	77	1	С

Mvoti to Umzimkulu Water Management Area: Desktop Estuary EcoClassification and EWR

Name	% Mouth Open	Depth	Salinity
Little aManzimtoti	72	1	F
aManzimtoti	44	1	С
Mbokodweni	86	2	F
Sipingo	5?	2	F
Durban Bay	100	2	Α
uMngeni	95	2	F
Mhlanga	48	2	E
uMdloti	40	1	F
uThongathi	84	2	F
Mhlali	48	1	В
Bob's Stream	20?	1	Α
Seteni	35	1	Α
Mvoti	99	1	В
Mdlotane	14	2	Α
Nonoti	18	2	В
Zinkwasi	28	1	Α


11.4.2 Other water quality parameters

Water quality information on the estuaries of WMA11 is very limited. In order to estimate the present status of water quality in these estuaries water quality conditions were estimated from various sources draining into each estuary (Figure 11.1). Three sources were considered, namely:

- River inflow into the estuary
- Effluents from wastewater treatment plants (WWTW) discharged directly into estuaries.
- **Urban stormwater runoff** *entering along the banks of the estuary*

For a specific estuary, the daily volume for river inflow were estimated from Present Mean Annual Runoff (MAR), e.g. MAR/365 = Estimated daily volume.

Daily effluent volumes from WWTW were obtained from the responsible authorities and are summarised in Table 11.5.

Figure 10.1 Schematic illustration of the approach adopted for water quality condition.
Table 11.5 Daily WWTW volumes discharged into the estuaries.

Estuary	WWTW	Daily Volume (M ³)	Position of discharge
Mvutshini	Ramsgate	1 300	Just upstream into river
Kongweni	Margate	4 998	Estuary
Vungu	Uvongo	1 500	Estuary
Koshwana			WWTW in middle reach next to estuary?
uMkhomazi	Umkomaas	1 000	Estuary
Little aManzimtoti	Kingsburgh	5 000	Just upstream in river
Mbokodweni	Isipingo	16 000	Estuary
WIDOKOGWEITI	aManzimtoti	24 000	Estuary
Durban Bay	Umbilo	16 000	Estuary
Duiban bay	Umhlatuzana	10 000	Estuary
	Kwa-Mashu	67 000	Just upstream into river
uMngeni	Northern	54 000	Just upstream into river
uwingeni	New Germany	1 000	Just upstream into river
	Phoenix	>8 000	Via Mhlangane River into river
uThongathi	Tongaat	7 000	Just upstream into river
urnonyaun	Frasers	5 000	Just upstream into river
Mvoti	Stanger- Kwadukuza	4 000	Estuary

It was not possible to obtain reasonable estimated of daily volumes for urban stormwater runoff directly into the estuary.

For the purposes of this study present water quality (WQ) of sources were rated as a "Modification from Reference" as follows:

- 1 = no difference
- 2 = some modification
- 3 = moderate modification
- 4 = large modification
- 5 = high modification
- 6 = severe modification

In the case of WWTW effluent a rating of **6** (severe modification) was allocated as a default. This was based on the assumption that even if WWTW is treated to General or Special Standards (according to the General Authorisation Regulations of 2004 under the National Water Act), dissolved inorganic nitrogen (DIN) concentrations in effluent will still be relatively high. For example general and special standards for DIN is 21 000 μ g/ℓ and 3 500 μ g/ℓ, respectively (Estuaries typically range between 50-150 μ g/ℓ). Similarly General and Special standard concentrations for DIP are 10 000 μ g/ℓ and 1000 μ g/ℓ, respectively (estuaries typically range between 10-20 μ g/ℓ). The water quality ratings for river inflow were estimated from the PES allocated to the river water quality allocated as part of the river component of this study. The water quality rating for stormwater was based on expert judgement and visual observations from Google Earth.

Using the above information, the influence of various sources on the water quality of an estuary was estimated as follows:

1. Allocate a **water quality rating** (1 to 6) to each source entering into the estuary (e.g. river, effluent and/or urban stormwater)

2. In the case of river inflow and WWTW effluent calculate a **volume fraction** as a ratio of the Estuary:

Vol_{estuary}/Volume_{inflow} (e.g. ratio >1, input has high influence on estuary water quality; ratio <0.25 input has low influence on estuary water quality)

3. For river and WWTW effluent estimate effect on estuary water quality of specific source as follows:

				WQ rating	of Inflow		
		1	2	3	4	5	6
/Daily	>1	1	2	3	4	5	6
volume. ne	1-0.75	1	2	3	4	5	6
tion: Estuary ve inflow volume	0.75-0.5	1	1	2	3	4	5
Volume fraction: Estuary volume/Daily inflow volume	0.5-0.25	1	1	1	2	3	4
Volume	<0.25	1	1	1	1	2	3

- 4. In the case of stormwater, use the water quality rating and visual observation of area and extent of urban development along banks of the estuary to estimate effect on estuary water quality
- 5. Use the maximum "estimated effect on estuary water quality" of either river inflow, WWTW effluent or urban stormwater as the preliminary water quality condition in estuary.
- 6. Modify the preliminary water quality conditions in the estuary based on **% open/closed mouth** as follows:

			Preliminary Estuary WQ condition							
		1	1 2 3 4 5							
th open	>70%	1	2	3	4	5	6			
Percentage mouth open	70-40%	2	3	4	5	5	6			
Percent	40-0%	3	4	5	5	5	6			

The present day water quality condition estimated for estuaries in the Mvoti to Umzimkuluare presented in Table 11.6.

The final scoring from A to F represents the following:

- A = no difference;
- *B* = some modification;

C = moderate modification; D = large modification;

E = high modification; and

F = severe modification.

Table 11.6. Assessment of the water quality of the Mvoti to Umzimkulu WMA estuaries.

				Es	timated effect on estu	ary WQ
Name	Overall estuary WQ condition	% Mouth open	Prelim estuary WQ condition	wwtw	Urban stormwater/ agricultural return flows along banks	River inflow
Mtamvuna	Α	95	1			1
Zolwane	Α	81	1			1
Sandlundlu	В	60	1			1
Ku-Boboyi	В	53	1			1
Tongazi	С	91	3		3	3
Kandandhlovu	С	54	2		2	1
Mpenjati	С	71	3	3	3	1
Umhlangankulu	E	33	3		3	1
Kaba	D	27	2			2
Mbizana	В	54	1			1
Mvutshini	С	42	2			2
Bilanhlolo	D	40	2		2	1
Uvuzana	D	32	2		2	1
Kongweni	D	49	3	3	3	1
Vungu	D	96	4	3	-	4
Mhlangeni	C	55	2	Ŭ		2
Zotsha	D	70	3		3	2
Boboyi	C	94	3		3	3
Mbango	E	86	5	5	4	3
Umzimkulu	B	97	2	-	7	2
uMthente	B	41	1			1
Mhlangamkulu	C	19	1			1
Damba	C C	28	1			1
Koshwana	C C	26				
	C C	42	1			1
Intshambili	C C	70				2
Mzumbe			2			2
Mhlabatshane	В	50	1			1
Mhlungwa	C	29	1			1
Mfazazana	С	24	1			1
Kwa-Makosi	В	41	1			1
Mnamfu	C	40	1			1
Mtwalume	С	70	2			2
Mvuzi	С	23	1			1
Fafa	С	40	1			1
Mdesingane	D	40	2			2
Sezela	D	19	2		2	1
Mkumbane	D	8	2			2
uMuziwezinto	D	50	3			3
Nkomba	D	10	2			2
Mzimayi	D	20	2			2
Mpambanyoni	С	78	3		3	2

				Es	timated effect on estu	ary WQ
Name	Overall estuary WQ condition	% Mouth open	Prelim estuary WQ condition	wwtw	Urban stormwater/ agricultural return flows along banks	River inflow
Mahlongwa	С	22	1			1
Mahlongwane	D	13	2		2	1
uMkhomazi	С	99	3	3		2
Ngane	D	54	3		3	3
Umgababa	В	46	1			1
Msimbazi	E	36	3		3	1
Lovu	С	70	2			2
Little aManzimtoti	E	70	4		4	3
aManzimtoti	E	40	3		3	1
Mbokodweni	E	86	5	4	3	5
Sipingo	E	5	3		3	1
Durban Bay	С	100	3	3	3	1
uMngeni	F	95	6			6
Mhlanga	D	48	3		2	3
uMdloti	F	40	4			4
uThongathi	F	84	6			6
Mhlali	D	40	2			2
Bob's Stream	D	10	2			2
Seteni	С	41	2			2
Mvoti	F	99	6	3		6
Mdlotane	С	14	1			1
Nonoti	E	18	1		1	1
Zinkwasi	С	28	1			1

11.5 MACROPHYTES

11.5.1 Macrophyte groups

Nine different habitat types are recognised for estuaries (Table 11.7). These include the microalgal habitats e.g. open water surface areas and intertidal sand and mudflats as the area covered by each habitat is used to calculate the overall botanical importance of an estuary. The most common macrophyte habitats in Mvoti to Umzimkulu WMA are reeds and sedges due to the freshwater nature of these small systems. Submerged macrophytes, plants that are rooted in the substrate with their leaves in the water column, are uncommon in KwaZulu-Natal's small estuaries. They cannot withstand silt deposition and are sensitive to light reduction which reduces photosynthesis and primary production. Sediment resuspension due to flooding causes temporary smothering of these plants. Human impacts such as dredging can cause the same effect. Lagoon swamp forest occurs in many of KZN's estuaries where they are found as isolated patches in the upper reaches of permanently open estuaries or are dominant in the smaller, fresher temporarily open/closed estuaries such as uMdloti. In permanently open estuaries they can also occur at sites where freshwater seeps from adjacent coastal dunes. Unfortunately much of the area of swamp forest has been lost to development, agriculture and forestry. Salt marsh and mangroves are also restricted in distribution and abundance as they occur in saline habitats which are uncommon because of the high rainfall and freshwater conditions of the many small estuaries.

Table 11.7 Macrophyte habitats and functional groups recorded in the Mvoti to Umzimkulu WMA estuaries (spp. examples in italics).

Habitat type	Species
Open surface water areas	Proxy as available habitat for phytoplankton.
Intertidal sand and mudflats	Indicates available habitat for intertidal and sub-tidal benthic microalgae.
Submerged macrophyte beds	Zostera capensis, Ruppia cirrhosa, Potamogeton pectinatus (now known as Stuckenia pectinata)
Macroalgae	Ulva spp., Enteromorpha spp.
Intertidal salt marsh	Sarcocornia tegetaria, Triglochin spp.
Supratidal salt marsh	Sarcocornia pillansii, Sporobolus virginicus.
Reeds and sedges	Phragmites australis, Schoenoplectus scirpoides, Juncus kraussii
Mangroves	Avicennia marina, Rhizophora mucronata, Bruguiera gymnorrhiza.
Swamp forest	Barringtonia racemosa, Hibiscus tiliaceus

11.5.2 Baseline description: Species diversity, richness and rarity

Historically estuaries along the KwaZulu-Natal coastline supported restricted macrophyte communities as they are often perched with steep channels and narrow riparian areas. Permanently open estuaries within this WMA support fringes of mangrove and swamp forest habitats. Development and utilisation for wood has led to the loss of mangroves from a number of the systems. In general the temporarily open/closed estuaries do not support salt marsh and mangrove habitats as they require tidal inundation and saline conditions. All habitats are dependent on flooding (both tidal and riverine) and suitable salinity. Any changes in these drivers will reduce the species richness, growth, cover, distribution and community composition. Anthropogenic activity, particularly the N2 bridges, cultivation of sugarcane in the floodplain; and input from Wastewater Treatment Works (WWTW) have impacted these estuaries. Loss of riparian habitat and proliferation of alien vegetation is problematic.

11.5.3 Factors affecting the abundance of different macrophytes groups

The effect of abiotic characteristics and processes, as well as other biotic components on macrophyte habitats is described in Table 11.8.

Table 11.8 Effect of abiotic characteristics and processes, as well as other biotic components on macrophyte habitats.

Process	Macrophytes
Mouth condition (provide temporal implications where applicable)	Open mouth conditions favour the establishment and growth of mangroves, which only occur in permanently open systems. Sand and mudflats may increase in area under open mouth condition due to a decrease in water area. Closed mouth conditions and a rise in water level for prolonged droughts can result in macrophyte die back.
Retention times of water masses	During closed mouth conditions (i.e. long retention time) it is likely that nutrient levels in the estuaries would increase providing optimal conditions for reed expansion.
Flow velocities (e.g.	Submerged macrophytes and macroalgae are washed out of estuaries under high

Mvoti to Umzimkulu Water Management Area: Desktop Estuary EcoClassification and EWR

Process	Macrophytes					
tidal velocities or river inflow velocities)	flow conditions.					
Total volume and/or estimated volume of different salinity ranges	Different macrophytes are distributed along a salinity gradient.					
Floods	Major flood scour the estuaries removing reeds and fringing communities thus increasing open water habitats. These are important for resetting estuaries and preventing reed expansion.					
Salinity	Reeds, sedges, swamp forest are indicative of low salinity conditions (<15 ppt) whereas salt marsh and mangroves prefer high salinity conditions (>25 ppt).					
Turbidity	High turbidity can result from catchment disturbance and sediment runoff. This reduces the light available to submerged macrophytes and causes die-back.					
Dissolved oxygen	Eutrophication caused by increased nutrient input depletes oxygen. Prolonged anoxic conditions reduce the growth of mangroves.					
Nutrients	Increased nutrients input from agricultural runoff and treated effluent from WWTW will enable proliferation of reeds and sedges as well as nuisance aquatic macrophytes which are mostly alien species such as Azolla and Eicchornia (water hyacinth).					
Sediment characteristics (including sedimentation)	Extensive sediment transport occurs during flooding. Development of the N2 resulted in the infilling of open water and riparian areas. Poor agricultural practices have caused erosion.					
Other biotic components	Alien invasive species are problematic in both the riparian fringes- Syringa (Melia azederach) and Brazilian pepper tree (Schinus terebinthifolia); and open water- water hyacinth (Eichhornia crassipes) and Nile cabbage (Pistia stratiotes).					

11.5.4 Summary of the macrophytes condition in Mvoti to Umzimkulu WMA

Available literature was summarised to identify the change in macrophyte habitats (Table 11.9). An estimate was made of the percentage change in habitat from natural. This was done using available literature, aerial photographs and Google imagery. The percentage change was assigned to five main pressures; loss of habitat as a result of disturbance which could be development or agriculture, eutrophication, loss of habitat due to invasion by alien plants, loss of mangroves, sedimentation and reed expansion. Table 11.9 A summary of the macrophyte conditions of the Mvoti to Umzimkulu WMA estuaries based on available information. The following historical assessments are summarised below: Begg (1978) condition (G=Good, F=Fair, D=Degraded, HD=Highly disturbed);Forbes & Demetriades (2009) Pressure (H=High, M=Medium, L=Low); Harrison (2000) Aesthetic score (G=Good, M=Moderate, P=Poor).

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
Mtamvuna		G		М	10		5	5		В	Loss of mangrove area 1 ha, low density development in lower reaches, Lantana and Casuarina invasions in campsite on northern bank (Cooper et al. 1993). Day (1950) thin mossy algal carpet possibly Chara.
Zolwane		G			15		5			В	Conservation potential (Begg) few Casuarina trees (Cooper et al. 1993), 2013 Google : some impact from an upstream bridge, little estuarine habitat.
Sandlundlu		F		G	25		5			С	Entire floodplain utilised, campsite, small bridge crosses upper reaches, exotics present (Cooper et al. 1993). Submerged Ruppia or Zostera growing on the floor of the lagoon (in the 70s) (Begg 1968).
Ku-Boboyi		D			10	5	5			В	Near pristine, campsite has Lantana, grassing of shoreline (Cooper et al. 1993). No longer serves estuarine function (Begg 1968). KZN mapping (2013) reeds & sedges, coastal forest. 2013 Google : Possibly some runoff and pollution from surrounding development.
Tongazi				G	25	5				С	Pristine condition (Cooper et al. 1993). 2013 Google : some storm water and sewage input, upstream disturbance, therefore some change in macrophytes as a result possibly macroalgal blooms although only swamp forest recorded in botanical database.
Kandandhlovu		F		G	30					С	Loss of mangroves, Ward and Steinke (1982) recorded 0.5 ha Bruguiera gymnnorhiza. Undeveloped reeds in lower reaches and riverine forest in upper reaches, residential development in surrounds (Cooper et al. 1993). 2013 Google : upstream transformation, sedimentation and expansion of reeds, the estuary is now possibly fresher.
Mpenjati				М	25	5				С	45 % of floodplain used for recreational activities, 10 % sand mining, 2 bridges, moderate to dense residential development, Lantana and Chromolaena, filamentous algae observed during sampling (Cooper et al. 1993). Blooms of filamentous algae e.g. Chaetomorpha (Begg 1984).2013 Google : wastewater & stormwater inputs could increase macroalgal blooms

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
											and reed and sedge expansion.
Umhlangankulu				М	50					D	Residential and recreational activities within the floodplain (Cooper et al. 1993). 2013 two bridges, KZN mapping: swamp forest, botanical database includes swamp forest and reeds & sedges. Rajkaran in 2006 found no mangroves, Ward & Steinke (1982) recorded 0.5 ha of mangroves.
Kaba				G	20		10			С	Near natural, fairly dense residential development, some exotic vegetation, some reinforcement of the banks (Cooper et al. 1993) Chaetomorpha (filamentous algae) blooms recorded (Begg 1978), he also recorded reed encroachment due to shallowing. 2013 Potamogeton (pondweed) present in botanical database.
Mbizana		D		G	20		10			С	Almost entirely natural, abundant residential developments, low bridge, exotic vegetation (Cooper et al. 1993). 2013 Google : bridge would have influenced habitat, reeds & sedges and swamp forest present, there may have been some reed encroachment as a result of sedimentation and shallowing.
Mvutshini				G	20	10				С	Mainly natural, bridge, moderate residential development (Cooper et al. 1993). 2013 Google : no large macrophyte habitats, some reeds. Deterioration in water quality may result in macroalgal blooms.
Bilanhlolo				М	35	20				D	Loss of mangroves 0.5 ha Bruguiera gymnnorhiza (Rajkaran et al. 2009). Residential development in floodplain, sewage pipes (Cooper et al. 1993) Blooms of Chaetomorpha (Begg 1978). 2013 Google images: Possible loss of intertidal habitat and development in floodplain. Possible algal blooms due to wastewater input. KZN Wildlife mapped Hibiscus tiliaceus (swamp forest), coastal forest, reed swamps present.
Uvuzana		F		М	20		10			С	Mainly natural, bridge, dense residential development, pine trees (Cooper et al. 1993). 2013 Google : 4.5 ha of reeds, possible expansion due to sedimentation and bridge.
Kongweni		HD		Р	40	15		5		E	Loss of mangroves, 0.5 ha Bruguiera gymnnorhiza (Rajkaran et al. 2009). Dense residential development, 60 % of shoreline unnatural (Cooper et al. 1993). 2013 Google : swamp forest, reeds & sedges, possible eutrophication, mouth manipulation.
Vungu				G	10	5	5			В	Mostly natural, multi-unit developments in the area, waterfall at head of estuary (Cooper et al. 1993). 2013 Google : steep sided with cliffs and only

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
											some reeds present.
Mhlangeni				М	20	10			10	D	Majorly impacted by freeway bridge and holiday flats on south bank. Dense residential development, algal bloom during sampling and covered with filamentous algae (Cooper et al. 1993). 2013 Google : 8 ha of reeds & sedges, possible expansion due to eutrophication and reduction in base flow.
Zotsha	25			М						С	Barringtonia on north bank and surrounds mainly agricultural grasslands. 70 % of floodplain used for residential and recreational activities, 30 % shoreline grassed, 3 bridges, invasive vegetation, few houses (Cooper et al. 1993)
Boboyi		F		G	20	0		0	10	с	Near pristine state, 50 % sugarcane surrounds the estuary, 2 bridges but no impacts (Cooper et al. 1993). Extensive reed swamp (Begg 1984). 2013 Google : some loss of habitat and disturbance due to bridges.
Mbango		F		Р	50	10				E	30 % of floodplain occupied by a garage. 2 low bridges (Cooper et al. 1993). 2013 google : disturbance due to bridges, development, disturbed floodplain and infilling, reeds, sedges and swamp forest present. Eutrophication due to past sewage spills but there has been a recent improvement.
Umzimkulu	80	D		М						В	No natural floodplain- divided by recreational and industrial use, mouth stabilised on one side, south bank impacted by railway yards and factories, moderate turbidity and invasive aliens present (Cooper et al. 1993). Small salt marsh near the old ferry site (Juncus and Salicornia) and a carpet of green 'Vaucheria like' algae on the intertidal mud flats (Begg 1984).
uMthente		D		М	50	5			5	D	Caravan park, 3 bridges, 15 % of natural shoreline replaced with solid structure and artificially grassed, moderately dense residential developments (Cooper et al. 1993). Weir, fishing, sugarcane encroachment, macroalgal blooms (Chaetomorpha) periodically. 2013 Google shows development disturbance within the 5 m contour line. Base flow reduction and surrounding disturbance may have led to some reed encroachment.
Mhlangamkulu		F		G	45	5		5	5	D	Loss of mangroves, 0.5 ha. Riverine forest communities worth preserving. Near natural, difficult to access, 2 bridges, severe invasion, little residential developments. Saw-weed and Lamprothamnium papulosum. Traces of pondweed found, and periodic blooms of Chaetomorpha (Begg 1978).
Damba				М	20				10	С	Campsite, 2 bridges, holiday houses, severe algal blooms and thick mat of filamentous algae during sampling (Cooper et al. 1993). Important for swamp

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
											forest fringe according to Begg (1978). 2013 Google : Reduction in base flow possibly some reed expansion.
Koshwana				М	25				10	С	Reed covered floodplain, near-natural conditions, railway bridge and old bridge pilings, moderate turbidity and holiday houses, access limited (Cooper et al. 1993). Sewage works above lagoon (Begg 1978). 2013 Google : Reduced base flow may have led to reed encroachment.
Intshambili		G		G	25				5	С	Undeveloped, dense Barringtonia swamp in southern channel, 2 bridges both with embankments, ski-boat launch site, little residential development (Cooper et al. 1993). 2013 Google: Possibly some reed encroachment due to reduced base flow, agricultural disturbance in the floodplain including infilling.
Mzumbe		HD			50				10	E	50 % of floodplain under sugarcane and 10 % maize cultivation, 2 bridges with embankments (Cooper et al. 1993). 2013 Google : Disturbance due to roads and bridges, agriculture in the floodplain, disturbance upstream as a result of sand mining, currently 5 ha of reeds & sedges.
Mhlabatshane		F		М	30		10			D	3 bridges, invasive vegetation, few houses (Cooper et al. 1993). Blooms of Chaetomorpha recorded by Begg (1978). 2013 Google : Disturbance due to development in lower reaches as well as development in the floodplain. Important swamp forest habitat.
Mhlungwa				G	50				10	E	Nearly pristine, 2 bridges (Cooper et al. 1993). Lower reaches have records of pondweed and Lamprothamium papulosum (Begg 198). 2013 Google images: Lower reaches altered, disturbance in the floodplain, major disturbance from infilling from N2 and since Begg's time. Also sugarcane in floodplain.
Mfazazana		F		М	40				10	D	Botanically "unimportant" (Begg 1978). Near natural, 3 low bridges, mouth stabilised on both sides. 2013 Google : Some disturbance in the floodplain and surrounding areas.
Kwa-Makosi		F		М	30					с	Botanically "unimportant" (Begg 1978) undeveloped, 3 low bridges, mouth stabilised on both sides (Cooper et al. 1993). 2013 Google bridge near lower reaches, N2 upstream has resulted in infilling. Currently has 3.5 ha reeds and sedges and 7 ha swamp forest.
Mnamfu		F		М	30					С	Botanically "unimportant (Begg 1978)" 4 low bridges, stabilised on both sides (Cooper et al. 1993). 2013 Google images: loss of habitat in the upper reaches, some decrease in base flow but no evidence of reed encroachment.

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
Mtwalume				М	20		10			с	Agriculture in floodplain, 3 bridges all with embankments, invasive alien species, minor residential development (Cooper et al. 1993). Proposed dam (Begg 1978). 2013 Google images: only reeds and sedges 4 ha present, some change in habitat as a result of bridges and other developments.
Mvuzi				М	30				5	С	Near pristine, floodplain covered with reeds and grasses, 2 bridges, invasive species and a few houses (Cooper et al. 1993). 2013 Google images: Road near mouth would have caused some changes, little sedimentation and reed encroachment, severe disturbance in the upper reaches.
Fafa		G		G	20				20	D	Campsite, 1 bridge, mouth manipulated by weir, invasive species (Cooper et al. 1993). References to Potamogeton at the upper end of the estuary in the 1950s. Study in 1971 indicated 37 species of algae (Begg 1978). Potamogeton crispus and Lamprothamnium papulosum found in 1982. Google images 2013: Disturbance upstream from N2 and sand mining. Disturbances possibly caused some shallowing and reed encroachment. Reeds absent in earlier aerial photographs 1960s, 1980s.
Mdesingane		F		G	35	5			20	E	Conservation potential (Begg 1984). Weir, low bridge, moderate water turbidity and a car park (Cooper et al. 1993). 2013 Google images: Small estuary destroyed by weir, roads & bridge, subsequent reed growth, approximately 6 ha of reeds and sedges. Bulrush (Typha) also present, possible nutrient enrichment.
Sezela		HD		М	25	5				С	Sugar mill on north bank. Severe algal blooms during sampling (Cooper et al. 1993). Small dam to supply township (Begg 1978). 2013 Google images: habitat loss on north bank, extensive reed areas, some loss due to development.
Mkumbane				М	45				5	D	Largely undeveloped, invasive vegetation (Cooper et al. 1993). 2013 Google images: disturbance in the floodplain due to agriculture, possibly some eutrophication and reed expansion.
uMuziwezinto		G			40					D	Conservation potential (Begg 1978). Undeveloped but most of floodplain under bananas and sugarcane. 3 bridges, 20 % banks stabilised with fill (Cooper et al. 1993). 2013 Google images: Loss of habitat due to development, upstream disturbance due to N2.
Nkomba					30					С	2013 Google images: some upstream development leading to change in

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
											habitat, Casuarina trees present (Begg 1984).
Mzimayi				М	20				10	С	Nearly pristine. 10% of bank composed of solid fill, 2 bridges, invasive species (Cooper et al. 1993). 2013 Google images: Some reed encroachment
Mpambanyoni		HD		М	40					D	Agricultural development in the floodplain. 4 Bridges, Surprising not well developed for running through Scottburgh. Dams and virtually no vegetation (Begg 1978). 2013 Google images: floodplain disturbance.
Mahlongwa		G		М	35			5		D	Loss of mangroves, 0.5 ha (Rajkaran et al. 2009). Floodplain mostly undeveloped. 3 bridges (Cooper et al. 1993) stunted Ruppia spiralis occurred on one occasion in winter with a bloom of Chaetomorpha (Begg 1984). 2013 Google images: bridges, floodplain development led to habitat loss.
Mahlongwane			М	М	40					D	25 % of the floodplain utilised for agriculture and 10 % stabilised with solid fill. 3 bridges with the mouth stabilised by the railway bridge. Access to the estuary is difficult hence good condition. (Cooper et al. 1993) Extensive beds of saw-weed (Najas marina). 2013 Google images: loss of habitat due to developments.
uMkhomazi		HD	М	М	30		5	5		D	Loss of mangroves (Begg 1978), industrial and agricultural landuse in the floodplains, 10 % of the banks stabilised. Exotic vegetation a moderately severe problem (Cooper et al. 1993). 2013 Google images: Loss of mangroves approximately 7 ha, habitat loss due to development, disturbance and alien vegetation in floodplain.
Ngane		F	М	G	35			5		D	Loss of mangroves, 0.4 ha. Mainly undeveloped, bridges, exotic vegetation and high turbidity (Cooper et al. 1993). 2013 Google images: upstream disturbance and habitat loss. Possible sedimentation and macrophyte growth as a result of N2, 1976 aerial shows undisturbed, larger water surface area. Black mangrove (Bruguiera gymnorrhiza) was observed in the estuary during a site visit in July 2013
Umgababa		G	М		40					D	Loss of mangroves, 0.5 ha (Rajkaran et al. 2009). Floodplain mostly undeveloped. 4 bridges (Cooper et al. 1993). 2013 loss of habitat due to disturbance, upstream N2 impacts. Submerged Zostera beds, Ruppia maritima in the upper reaches, saw-weed (Najas marina) in the middle reaches, Alternanthera sessilis near the mouth, blooms of Chaetomorpha. Stilaphora flananganii and Lamprothamnium papulosum algae blooms (Begg

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
											1984). Large floodplain areas of rush Juncus kraussii indicative of brackish conditions.
Msimbazi		G	М	G	25			5	5	С	Loss of mangroves, 0.5 ha (Rajkaran et al. 2009). Floodplain mostly undeveloped. 4 bridges (Cooper et al. 1993) Blooms of filamentous algae (Chaetomorpha sp.) (Begg 1978). 2013 Google images: Floodplain developments and changes in channels in response to N2 and infilling.
Lovu		F	L	М	30			5	5	D	Loss of mangroves, 2 ha. Agricultural and residential developments within floodplain, 4 bridges (Cooper et al. 1993). 2013 Google images: loss of habitat due to floodplain disturbance, possibly some reed encroachment
Little aManzimtoti	30	HD	Н	М	30		10			D	Loss of mangroves, 0.5 ha (Rajkaran et al. 2009). Development in floodplain, 4 bridges, alien invasives (Lantana and Chromolaena) (Cooper et al. 1993).
aManzimtoti		D	М	Ρ	40	20	10			Е	Commercial development covers entire floodplain. 5 low bridges and presence of Pistia. Development surrounds the estuary (Cooper et al. 1993). 2013 Google images: Loss of habitat as well as eutrophication.
Mbokodweni	58	HD	Н	Р	50	10	10			E	Alien invasive aquatics recorded Eicchornia, Pistia. Lowest appearance score. Golf course and industrial uses of floodplain, stabilised mouth, residential and industrial area running through Prospecton Industrial Area (Cooper et al. 1993). 2013 Google images: Complete loss of habitat due to golf course and other development.
Sipingo			Н	Р	45	20		5		E	Second worst score in the study! Formal residential and commercial activities (Prospecton Industrial works with a canalised sewage works located upstream) in the floodplain. 50 % of banks stabilised. Litter, invasive species, persistent sewage smell (Cooper et al. 1993). Remnants of salt marsh communities Sarcocornia natalensis when visited in 1979 as well as blooms of Chaetomorpha (Begg 1984). Hiralal (2001) 1948 herbarium specimen of Zostera for Sipingo. 2013 Google images: extreme loss of habitat and some macrophyte changes due to eutrophication.
Durban Bay			Н		70			20		F	Zostera capensis beds disappeared with the decimation of the mangroves. Reclamation and dredging (Begg 1978). 2013 Google images: major loss of mangroves and submerged macrophytes, riparian and floodplain habitat.
uMngeni	65		Н	М						F	Golf course in floodplain, 4 bridges, mouth stabilised, surrounded by developments (Cooper et al. 1993).

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
Mhlanga		G	Н	G	25		10			С	Loss of mangroves 0.5 ha (Rajkaran et al. 2009), reed swamp conversion now secondary grasslands. Bridge and embankment near the coast, exotic vegetation (Cooper et al. 1993). Freshwater Potamogetan pectinatus downstream of the bridge (Begg 1978).
uMdloti	20	Р	Н	М	65		10			Е	2 Bridges, residential development (Cooper et al. 1993). Alien invasive aquatics recorded Azolla, Eicchornia, Pistia (Begg 1978). Dam present.
uThongathi	60	HD	Н							Е	Sugarcane encroachment, bridge near mouth, invasive species including water hyacinth (Cooper et al. 1993).
Mhlali				G	40					D	Sugarcane encroachment & weir across lagoon (Begg 1978). Near pristine condition (Cooper et al. 1993). Mild bloom of Chaetomorpha during 1981 during a period when the mouth was open (Begg 1978). 2013 Google images: extensive transformation in floodplain mainly due to agriculture.
Bob's Stream					30					С	2013 Google images: Some habitat transformation.
Seteni					30		10			С	Near pristine health, Invasive plants (Cooper et al. 1993). Essentially undisturbed but sugarcane encroaching and severe siltation (Begg 1978).
Mvoti		D		М	30	10	10			D	Prolific bird life. 3 bridges, severe algal blooms and invasive vegetation (Cooper et al. 1993). 2013 Google images: major impacts from agriculture, invasives and disturbed riparian zones.
Mdlotane		G		G	20					в	Potential for conservation, Potamogeton occurs in the lower reaches. (Begg 1978). Exotic vegetation (Cooper et al. 1993). 2013 Google images: swamp forest important, disturbance from surrounding development, recent fish kill possible eutrophication.
Nonoti					30	30				D	Sugarcane encroachment, proposed dam, artificially breached (Begg 1978). Exotic vegetation (Cooper et al. 1993). Partially covered with water hyacinth as well as extensive beds of Potamogeton pectinatus, which is a sign of health in the system (Begg 1978). 2013 Google images: sugarcane to edge of estuary, some habitat loss and signs of eutrophication, water grass encroachment Echinocloa? as well as water hyacinth
Zinkwasi		Ρ		М	20				15	С	Sugar cane encroachment, caravan park at mouth and exotic vegetation (Cooper et al. 1993). Sandbar artificially breached, reeds encroaching into water course, 7 ha decrease in open water in the lagoon. Decrease in riverine vegetation, The charophyte Lamprothamnium papulosum= Chara

Name	EWR Studies	Begg	Forbes & Demetriades	Harrison	Loss of habitat	Eutrophication	Invasive	Loss of mangroves	Sedimentation & reed expansion	Macrophytes	Comments
											macropogon, was found in the system (Begg 1978). 2013 Google images: possibly some reed encroachment, some agricultural development, some invasive grass.

11.6 MICROALGAE

11.6.1 Microalgae groups

The microalgae groups are described in Table: 11.10.

Table 11.10Microphyte habitats and functional groups recorded in the Mvoti toUmzimkulu WMA estuaries (spp. examples in italics).

Gro	oup	Description					
	Cyanophytes	These microalgae are often very abundant in eutrophic water					
	Dino- flagellates	Not usually very abundant. This group are usually counted with the flagellates. Where this group become dominant it usually indicates a problem that requires investigation.					
Phytoplankton	Chlorophytes	Photosynthetic microalgae that occur in both fresh and marine water.					
	Diatoms	There are 333 species occurring throughout RSA estuaries. Higher biomass in eutrophic water. Alternate in abundance with flagellates. In good quality water they can be the dominant microalgal type present.					
	Flagellates	Heterotrophic. Very abundant in water that has lots of organic matter, i.e. eutrophic water.					
Microphyto- benthos (MPB)	Often has a greater abundance in still eutrophic water where the cells have time to settle to the sediment. In flowing water the cells are more frequent in the water column. Eutrophic water results in elevated MPB biomass.						

11.6.2 Description of factors influencing microalgae

The effect of abiotic characteristics and processes, as well as other biotic components on microalgae is summarised in Table 11.11.

Table 11.11 Effect of abiotic characteristics and processes, as well as other biotic components on microalgae.

Process	Microalgae
Mouth condition (provide temporal implications where applicable)	Mouth condition is very important because when open to the sea there is a good exchange of seawater to the estuary and there is an obvious flow of freshwater to the sea. Unless the freshwater is very eutrophic this is the best situation for a healthy microalgal population
Retention times of water masses	As the water retention increases the quality of the water for microalgae declines and much of the biomass can become benthic. This is not adverse as long as the duration (weeks) is not prolonged.
Flow velocities (e.g. tidal velocities or river inflow velocities)	Flooding is irrelevant because the estuary is reset. The outcome of this is good when the frequency is "normal". Natural velocities are best because those velocities define what is normal for the ecology.
Total volume and/or estimated volume of different salinity ranges	In estuaries, a good range of salinity from seawater to freshwater is good as it indicates both an open mouth and freshwater inflow. With salinity ranging from seawater to near fresh is best. A well-mixed estuary indicates a closed mouth. The longer it is closed the more likely that problems will occur.
Floods	Strong floods every 3-5 years resets the estuary and is best for microalgae
Salinity	Microalgae can tolerate salinity ranging from 0-35psu
Turbidity	High turbidity indicates low light penetration which will lower the score for microalgae
Dissolved oxygen	Microalgae under good conditions produce oxygen. When oxygen is low it can indicate that there is low microalgal activity.
Nutrients	Microalgal condition is best when nutrient content is low.
Sediment characteristics (including sedimentation)	Microalgae can tolerate all sediments. Active sedimentation usually goes with turbidity.

Process	Microalgae
Other biotic components	No known effects in RSA of problems with other biota.

11.6.3 Summary of the microalgae condition in Mvoti to Umzimkulu WMA

Microalgae were evaluated on the basis of the change in four driving components namely: (Hydrology% \times 0.25) + (Hydrodynamics% \times 0.25) + (Water Quality% (nutrients) \times 0.4) + (Macrophytes \times 0.10). Table 3.10 provides a summary of the microalgae component condition. Table 11.12 provide a summary of the microalgae component scores.

Name	Microalgae Condition	Comment
Mtamvuna	В	
Zolwane	Α	
Sandlundlu	В	
Ku-Boboyi	В	
Tongazi	В	
Kandandhlovu	В	
Mpenjati	В	
Umhlangankulu	С	Poor water quality and habitat degradation
Kaba	В	
Mbizana	В	
Mvutshini	В	
Bilanhlolo	С	Poor water quality, macrophyte cover changes
Uvuzana	В	
Kongweni	E	Flow modification, poor water quality, macrophyte cover changes
Vungu	С	Poor water quality
Mhlangeni	С	Poor water quality, macrophyte cover changes
Zotsha	В	
Boboyi	В	
Mbango	D	Flow modification, poor water quality, macrophyte cover changes
Umzimkulu	В	
uMthente	В	
Mhlangamkulu	С	Flow modification, macrophyte cover changes
Damba	С	Flow modification, macrophyte cover changes
Koshwana	С	Flow modification, poor water quality, macrophyte cover changes
Intshambili	С	Flow modification, poor water quality, macrophyte cover changes
Mzumbe	С	Poor water quality, significant macrophyte cover changes
Mhlabatshane	В	
Mhlungwa	В	
Mfazazana	С	Poor water quality, macrophyte cover changes
Kwa-Makosi	В	
Mnamfu	С	Flow modification, poor water quality, macrophyte cover

 Table 11.12
 Summary of the microalgae component condition.

Name	Microalgae Condition	Comment			
		changes			
Mtwalume	С	Poor water quality, macrophyte cover changes			
Mvuzi	C	Poor water quality, macrophyte cover changes			
Fafa	С	Flow modification, poor water quality, macrophyte cover changes			
Mdesingane	С	Poor water quality, significant macrophyte cover changes			
Sezela	С	Poor water quality, macrophyte cover changes			
Mkumbane	C	Poor water quality, macrophyte cover changes			
uMuziwezinto	С	Flow modification, poor water quality, macrophyte cover changes			
Nkomba	С	Poor water quality, macrophyte cover changes			
Mzimayi	С	Flow modification, poor water quality, macrophyte cover changes			
Mpambanyoni	В				
Mahlongwa	В				
Mahlongwane	C	Poor water quality, macrophyte cover changes			
uMkhomazi	С	Flow modification, poor water quality, macrophyte cover changes			
Ngane	С	Poor water quality, macrophyte cover changes			
Umgababa	В				
Msimbazi	В				
Lovu	С	Significant flow modification, poor water quality, macrophyte cover changes			
Little aManzimtoti	F	Significant flow modification, very poor water quality, macrophyte cover changes			
aManzimtoti	D	Flow modification, very poor water quality, macrophyte cover changes			
Mbokodweni	D	Flow modification, macrophyte cover changes			
Sipingo	F	Severe Flow modification, poor water quality, macrophyte cover changes			
Durban Bay	В				
uMngeni	D	Flow modification, poor water quality, macrophyte cover changes			
Mhlanga	D	Flow modification, poor water quality, macrophyte cover changes			
uMdloti	F	Poor water quality, macrophyte cover changes			
uThongathi	С	Very poor water quality, severe macrophyte cover changes			
Mhlali	С	Poor water quality, macrophyte cover changes			
Bob's Stream	В				
Seteni	В				
Mvoti	D	Flow modification, very poor water quality, macrophyte cover changes			
Mdlotane	В				
Nonoti	С				
Zinkwasi	В	Poor water quality, some macrophyte cover changes			

11.7 ESTUARINE INVERTEBRATE FAUNA

11.7.1 Invertebrate groups

The major invertebrates groups are described in Table11.13. They consist of a wider variety of taxonomic groups, but are broadly made up of segmented worms (polychaetes, and to a lesser extent oligocheates), molluscs (gastropods and bivalves), small benthic crustaceans (amphipods and isopods), small planktonic crustaceans (copepods) and large crustaceans (prawns and crabs). These groups all contain taxa that are either of marine origin, or complete their life cycles in estuaries. Few freshwater groups exist (selected carid prawns being notable exceptions). During prolonged mouth closure in TOCEs and in the upper (freshwater) reaches of open systems insect larvae do occur. In KwaZulu-Natal systems it is rarely the case that these occur abundantly, and if they do this insect assemblage is often dominated by chironomid larvae indicative of poor water quality (hypoxia).

Table 11.13Classification of the main South African estuarine invertebrate fauna and the
parameters influencing their abundance and distribution. POM = particulate
organic matter, MPB = Microphytobenthos

#	Description	Influencing factors
1	Polychaetes - estuarine resident (e.g. Ceratoneries keiskama, Dendronereis arborifera, Desdemona ornata)	Med to fine sediments; detritus; salinity, other edible invertebrates or POM in the case of D. ornata)
2	Polychaetes - marine (e.g. Nephtys sphaerocirrata, Ancistrosyllis parva)	Med to coarse sediments; detritus; open mouth; saline water, other edible invertebrates
3	Amphipods (e.g. Grandiderella spp., Corophium spp.)	Finer sand/mud; granulometry suitable for tube building; detritus; POM; reduced salinity
4	Isopods (e.g. Eurydice longicornis, Cirolana spp.)	Coarse sediments; higher salinity; dead matter
5	Gastropods - marine dominated species (detritivores, scavengers & predators e.g. Nassarius kraussianus)	Detritus; open mouth; MPB; higher salinity
6	Gastropods - resident sediment living grazers, detritivores (e.g. Melanoides tuberculata increasingly being replaced by the invasive Tarebia granifera)	Shelter; submerged macrophytes; MPB; detritus
7	Bivalves - estuarine resident (eg Brachidontes virgiliae)	Med-fine sediments; submerged macrophytes; POM
8	Bivalves - marine (e.g. Dosinia/Tellina/Eumarcia)	Med-coarse sediments; open mouth; POM
9	Crabs - resident estuarine (e.g. Paratylodiplax blephariskios)	Muddy sediments, often co-occur with Penaeid prawns
10	Crabs - marine (e.g. Varuna litterata)	Mouth condition, migrate from marine spawning grounds to freshatwer habiats, and back to see to spawn
11	Crabs - marine (e.g. Hymenosoma)	Open mouth; saline
12	Penaeid prawns - marine (e.g. Metapenaeus monoceros)	Med-fine sediments, muddy for some Penaeid species; detritus; predominantly open mouth and high salinity
13	Carid prawns - freshwater (e.g. Macrobracium spp.)	Submerged and emergent macrophytes; detritus; closed phase in TOCEs or upper reaches of open systems in lower salinity
14	Insect larvae	Submerged and emergent macrophytes, low salinities
15	Mudprawns (e.g. Upogebia)	Fine sand/mud; open mouth; POM
15	Sandprawns (e.g. Calianassa)	Sand; not extended fresh water (>17ppt to breed); POM
16	Zooplankton - marine	Phytoplankton; open mouth
17	Zooplankton – estuarine resident	Phytoplankton

11.7.2 Baseline description

A wide range of invertebrate taxa use estuaries in KwaZulu-Natal and are a critical component of the food chain, converting detritus and POM to productivity for higher tropic levels, including fishes, birds and man. Despite this wide range, abundance is typically contributed by relatively few species, especially in TOCEs. Two copepods genera (Acartia and Pseudodiaptomus) are dominant, contributing by far the major proportion of both abundance and biomass to the zooplankton assemblage. Smaller benthic invertebrates are dominated by polychaetes, often Desdemona ornata, Dendronereis arborifera and Ceratoneries keiskama. Oligocheates are sometimes abundant, but often only in the freshwater reaches of systems when organic content of sediments is particularly high. Amphipods (most often Grandiderella spp. and Corophium spp) are more abundant than isopods. Larger crustaceans comprise both crabs and prawns. These groups are generally more abundant in systems that are either permanently or predominantly open.

11.7.3 Factors affecting the invertebrate fauna

The main factors affecting the abundance of the different invertebrate groups found in the Mvoti to Umzimkulu WMA estuaries are summarised in Table 11.14.

Factor	Affected categories
Mouth condition (provide temporal implications where applicable)	Mouth closure often benefits the subtidal macrozoobenthos, since it increases benthic microalgae and therefore food availability. This typically leads to higher abundance of select species. Reduced connectivity with the sea however also leads to a loss of marine species, or species with a preference for high salinity waters.
Retention times of water masses	Increased retention times of the water mass would benefit the planktonic assemblage (holoplankton and meroplankton), since loss of larvae through tidal entrainment out of the estuary would be reduced. Increased retention time also allows for increased phytoplankton producing which benefits zooplankton and some benthic species.
Flow velocities (e.g. tidal velocities or river inflow velocities)	As tidal velocities increase, loss of the zooplanktonic forms increases, particularly copepods. Under high flow conditions, entire populations may be lost. Since zooplankton is a key component in the estuarine food web, the ripple effect would impact higher trophic levels directly. Recover time are however quite quick. Similarly, the benthic assemblage can be flushed from systems under high flow conditions. Recovery times for this assemblage are likely to be slower.
Total volume and/or estimated volume of different salinity ranges	The presence of different salinity zones (0-10, 10-30 and 30-35 approx.) ensures different habitats for organisms. These different zones also lead to increased species richness in the estuary. From a biomass perspective, the larger the 10-30 zone (volume), the higher the biomass of invertebrates present.
Floods	Floods scour accumulated sediments from the estuary, particularly in the lower reaches. Tidal exchange is enhanced and this leads to a resetting of the balance between the three major salinity zones. Because tidal exchange is more dynamic under open mouth conditions, coarser sediments (sand) in the lower estuary particularly are resorted and fine material scoured from these lower reaches near the mouth.
Salinity	The persistence of a full salinity gradient along the length of the estuary is an important characteristic and ensures a range of habitats available to organisms and hence a greater diversity of biota.
Turbidity	Although naturally turbid, benthic organisms may be smothered under excessive loads of fine material in the water column.
Dissolved oxygen	Plays a major role in influencing the benthic assemblage. However, if values fall below approx. 50% of surface saturation, organisms become stressed. Sessile organisms particularly are affected. Below these levels the community is characterised by fewer, more tolerant species.

 Table 11.14
 Effect of abiotic characteristics and processes, as well as other biotic components on invertebrate groupings

Mvoti to Umzimkulu Water Management Area: Desktop Estuary EcoClassification and EWR

Factor	Affected categories
Subtidal and intertidal habitat	The availability of both these tidal areas for inveterbrates is an important characteristic of the estuary, increasing species richness and biomass within these zones.
Sediment characteristics (including sedimentation)	A range of sediment types (particularly sand and mud) provides habitat for those organisms that require specific sediment characteristics. These include species that are tube builders, such as the amphipods Corophium spp. Sediment is probably the single most important environmental variable that structures benthic communities in TOCEs and is important, with salinity, in permanently open systems as well.
Phytoplankton and Benthic micro- algae biomass	High phytoplankton biomass leads to increased biomass of invertebrates in the estuary as it is the most important food component in the seston.
Zooplankton biomass	Zooplankton biomass is influence by a combination of high phytoplankton biomass and often salinity character tics of an estuary.
Aquatic macrophyte cover	Macrophyte cover is important for the sub- and intertidal invertebrate community as it provides protective habitat and detritus for consumption by the community. The presence, type and abundance of submerged aquatic vegetation is an important factor in the invertebrate productivity and biodiversity in estuaries. It also provides important substrate for microphytobenthos.
Fish biomass	A high fish biomass leads to high levels of predation on invertebrates.

11.7.4 Summary of the estuarine invertebrate condition in Mvoti to Umzimkulu WMA

Table 11.15 provide a summary of the microalgae component scores.

Name	Invertebrate Condition	Comments
Mtamvuna	С	
Zolwane	В	
Sandlundlu	D	Habitat destruction, reduced food availability
Ku-Boboyi	В	
Tongazi	D	Poor water quality, habitat destruction, reduced food availability
Kandandhlovu	D	Poor water quality, habitat destruction, reduced food availability
Mpenjati	D	Water quality, habitat destruction, reduced food availability
Umhlangankulu	E	Very poor water quality, habitat destruction, reduced food availability
Kaba	С	
Mbizana	С	
Mvutshini	C	
Bilanhlolo	D	Water quality, habitat destruction, reduced food availability
Uvuzana	D	Water quality, habitat destruction, reduced food availability
Kongweni	D	Flow modification, water quality, severe habitat destruction, reduced food availability
Vungu	C	
Mhlangeni	D	Water quality, habitat destruction, reduced food availability
Zotsha	С	
Boboyi	С	
Mbango	F	Flow modification, very poor water quality, severe habitat destruction, reduced food availability
Umzimkulu	С	
uMthente	С	
Mhlangamkulu	С	
Damba	С	

 Table 11.15
 Summary of the invertebrate component condition.

Name	Invertebrate Condition	Comments
Koshwana	С	
Intshambili	С	
Mzumbe	D	Water quality, habitat destruction (macrophytes), reduced food availability
Mhlabatshane	С	
Mhlungwa	D	Water quality, severe habitat destruction, reduced food availability
Mfazazana	D	Flow reduction, poor water quality, habitat destruction, reduced food availability
Kwa-Makosi	С	
Mnamfu	D	Flow reduction, poor water quality, habitat destruction, reduced food availability
Mtwalume	D	Poor water quality, habitat destruction, reduced food availability
Mvuzi	С	
Fafa	D	Poor water quality, severe habitat destruction (macrophytes), reduced food availability
Mdesingane	E	Flow reduction, poor water quality, habitat destruction, reduced food availability
Sezela	D	Poor water quality, habitat destruction, reduced food availability
Mkumbane	D	Poor water quality, habitat destruction, reduced food availability
uMuziwezinto	D	Poor water quality, habitat destruction, reduced food availability
Nkomba	В	
Mzimayi	D	Flow reduction, poor water quality, habitat destruction, reduced food availability
Mpambanyoni	D	Poor water quality, habitat destruction, reduced food availability
Mahlongwa	С	
Mahlongwane	В	
uMkhomazi	С	
Ngane	D	Poor water quality, habitat destruction, reduced food availability
Umgababa	D	Flow reduction, poor water quality, habitat destruction, reduced food availability
Msimbazi	В	
Lovu	С	
Little aManzimtoti	F	Significant flow increase, poor water quality, habitat destruction, reduced food availability
aManzimtoti	F	Significant flow increase, very poor water quality, severe habitat destruction, reduced food availability
Mbokodweni	F	Significant flow increase, very poor water quality, extreme habitat destruction, reduced food availability
Sipingo	F	Very significant flow reduction, very poor water quality, severe habitat destruction, reduced food availability
Durban Bay	F	Significant flow reduction, poor water quality, severe habitat destruction (port development), reduced food availability
uMngeni	F	Significant flow reduction, very poor water quality, severe habitat destruction, reduced food availability
Mhlanga	Е	Significant flow increase, poor water quality, habitat destruction, reduced food availability
uMdloti	F	Flow increase, poor water quality, habitat destruction, reduced food availability
uThongathi	E	Very poor water quality, severe habitat destruction, reduced food availability
Mhlali	С	

Name	Invertebrate Condition	Comments			
Bob's Stream	В				
Seteni	В				
Mvoti	F	Flow reduction, very poor water quality, habitat destruction (sand mining), reduced food availability			
Mdlotane	В				
Nonoti	D	Poor water quality, invasive floating and fringing macrophytes			
Zinkwasi	В	Habitat destruction, reduced food availability			

11.8 FISH

11.8.1 Fish groups

The major invertebrates groups are described in Table 11.16.

Table 11.16 Classification of South African fish fauna according to their dependence on estuaries (Whitfield 1994)

Category	Description
1	Truly estuarine species, which breed in southern African estuaries; subdivided as follows:
la	Resident species which have not been recorded breeding in the freshwater or marine environment
lb	Resident species which have marine or freshwater breeding populations
11	Euryhaline marine species which usually breed at sea with the juveniles showing varying degrees of dependence on southern African estuaries; subdivided as follows:
lla	a. Juveniles dependant of estuaries as nursery areas
llb	b. Juveniles occur mainly in estuaries, but are also found at sea
llc	c. Juveniles occur in estuaries but are more abundant at sea
	Marine species which occur in estuaries in small numbers but are not dependant on these systems
IV	Euryhaline freshwater species that can penetrate estuaries depending on salinity tolerance. Includes some species which may breed in both freshwater and estuarine systems.
V	Obligate catadromous species which use estuaries as transit routes between the marine and freshwater environments. Includes the following subcategories:
	a. Obligate catadromous species
	b. Facultative catadromous species

11.8.2 Baseline description

Whitfield (1998) lists a total of 142 species of fishes associated with southern African estuaries. Of these the brunt (131, 92%) have either cosmopolitan or subtropical distributions and therefore could occur in the estuaries under consideration in this study. However several of these species (e.g. Liza richardsonii) have distributional ranges centred in the warm temperate biogeographical zone, and their presence in KwaZulu-Natal estuaries is limited in terms of both frequency and abundance. The main families in terms of abundance in these systems are often small bodied Ambassidae (Ambassis spp.) and Clupeidae (Gilchristella aestuaria). Important in terms of biomass are Mugilidae (various species, but probably predominated by Myxus capensis, Valamugil cunnesius, Liza dumerilii, Liza macrolepis and Mugil cephalus), and, in freshwater dominated systems Cichlidae (Oreochromis mossambicus). The latter are all detritivores and their dominance

in terms of fish biomass is reflecting of the importance of detritus to the food base in KwaZulu-Natal estuaries.

11.8.3 Factors affecting the fish community

The effect of abiotic characteristics and processes, as well as other biotic components on fish is summarised in Table 11.17.

Factor	Ia. Estuarine residents (breed only in estuaries)	Ib. Estuarine residents (breed in estuaries and the sea)	IIa. Estuary dependent marine species	IIb and c. Estuary associated species	III. Marine Migrants	IV. Freshwater species
Mouth condition	Resident specie under closed m		Abundance and communities de closure.		marine migrant rolonged mouth	Increase in abundance if low salinity.
Retention times of water masses					increased retent ter species over r	
Flow velocities (e.g. tidal velocities or river inflow velocities)	Resident species move upstream when flow velocities increase. During spates these species may be washed out of systems (see below), but can return as flood waters recede, presumably led be tidal fronts.		Migrant species exploit tidal currents when migrating into the estuary or when feeding and following the tidal 'front' up the estuary.			
Total volume and/or estimated volume of different salinity ranges	Increased volume translates to an increase in available habitat for all species, especially those that spend most of their time in the water column (as opposed to benthic species, for example). Brackish water habitat favours resident and estuary-associated marine migrants while marine water is preferred by marine species. High water levels that inundate supratida areas are positive for juvenile marine fish and small estuarine species. During the closed phase of TOCEs high littoral habits are flooded providing habitat refuge and feeding opportunity to all fishes, including young juveniles using these systems are nursery areas.					
Floods	The larvae of resident species are washed into the sea at the onset of floods. Adults of small bodied species may also be affected.	Juvenile marine and catadromous species use floodwaters entering the sea as a cue for locating and migrating into estuaries, whereas adults and sub-adults exit during floods. Major river flooding associated with high sediment loads can cause gill clogging for fishes in the estuary. High cause gill clogging for fishes in the estuary.				
Salinity	Resident and estuary-associated marine species are Tend to inhabit Highly					Highly variable and most

Table 11.17	Summar	y of fish res	ponses to abiotic	processes and bio	tic components.

Factor	la. Estuarine residents (breed only in estuaries)	the sea)	iia. E depe ma spe	stuary ndent rine cies	IIb and o Estuary associate species	/ ed	III. Marine migrants	IV. Freshwater species
	Tolerance of sa	linities higher		PSU is i	more limited.	Be str sa	PSU. come essed at linities under PSU.	prefer salinity < 10 PSU.
Turbidity	Tolerant of a wie turbidities.	de range of	Little discernib response turbidity.	le p to v	Turbidity preferences vary among species		enerally prefer v turbidity	Tolerant of a wide range of turbidities.
Diccontou	Most resident a become stresse	-			-1	lov	tle tolerance to v oxygen rels/hypoxia.	Some indigenous species tolerant of low oxygen.
supratidal	during high tide. foraging areas f warmer than de are therfore favo	All the fish are confined to the subtidal at low tide but forage in the intertidal during high tide. Intertidal reaches are nonetheless extremely important foraging areas for most fish species. Shallow marginal areas tend to be warmer than deeper channel areas and have better oxygenated waters, and are therfore favourable for metabolic processes. Juveniles and small adults also use shallow water as a predation refuge.						
Other abiotic components	Low temperatur	es can increa	se the ris	k of ma	ss mortalities	s at v	very low saliniti	es.
Sediment characteristics (including sedimentation)	Individual specie well as water qu muddier sedime	uality characte						
Phytoplankton	High phytoplank species with hig				turbidity in es	tuar	ies and probab	ly favours those
Benthic micro- algae biomass	Detritivores, esp							
niomass	Filter and particulate feeders benefit from increased zooplankton biomass. Many fish species are able to switch between filter and targeted feeding modes to take advantage of dominant zooplanktonic food sources.							
Aquatic macrophyte cover	Juveniles of most fish species find refuge in littoral macrophyte beds during the daytime but move into open water during the night as oxygen levels drop in the littoral zone.							
Benthic invertebrate biomass	Many estuary-associated fish species feed on benthic invertebrates and will thus benefit from increases in benthic invertebrate biomass.							
Fish biomass	No major piscive categories. Mos consists of plan zoobenthivores.	iomass	associ differe mullet spotte comm dusky piscivo the hig	iated marine nt food chain Liza dumeril d grunter Pol ersonnii a zo kob Argyroso pre. The pisco gh biomass o nt and small	spec s, e. ii is a nada ober omus vore f est	a detritivore, asys nthivore and s japonicas a es benefit from	Oreochromis mossambicus can dominate biomass in TOCEs during prolonged mouth closed phases.	

11.8.4 Summary of the fish condition in Mvoti to Umzimkulu WMA

Table 11.18 provide a summary of the fish component condition.

Umzimkulu WMA.					
Name Fish Condition		Comments			
Mtamvuna	С				
Zolwane	В				
Sandlundlu	D	Habitat destruction, reduced food availability			
Ku-Boboyi	В				
Tongazi	D	Poor water quality, habitat destruction, reduced food availability			
Kandandhlovu	D	Poor water quality, habitat destruction, reduced food availability			
Mpenjati	D	Water quality, habitat destruction, reduced food availability			
Umhlangankulu	E	Very poor water quality, habitat destruction, reduced food availability			
Kaba	С				
Mbizana	С				
Mvutshini	С				
Bilanhlolo	D	Water quality, habitat destruction, reduced food availability			
Uvuzana	D	Water quality, habitat destruction, reduced food availability			
	D	Flow modification, water quality, severe habitat destruction, reduced			
Kongweni		food availability			
Vungu	С				
Mhlangeni	D	Water quality, habitat destruction, reduced food availability			
Zotsha	С				
Boboyi	С				
Mbango	F	Flow modification, very poor water quality, severe habitat destruction, reduced food availability			
Umzimkulu	С				
uMthente	С				
Mhlangamkulu	С				
Damba	С				
Koshwana	С				
Intshambili	С				
Mzumbe	D	Water quality, habitat destruction (macrophytes), reduced food availability			
Mhlabatshane	С				
Mhlungwa	D	Water quality, severe habitat destruction, reduced food availability			
Mfazazana	D	Flow reduction, poor water quality, habitat destruction, reduced food availability			
Kwa-Makosi	С				
Mnamfu	D	Flow reduction, poor water quality, habitat destruction, reduced food availability			
Mtwalume	D	Poor water quality, habitat destruction, reduced food availability			
Mvuzi	С				
Fafa	D	Poor water quality, severe habitat destruction (macrophytes), reduced food availability			
Mdesingane	E	Flow reduction, poor water quality, habitat destruction, reduced food availability			

Table 11.18Summary of the Fish component condition in the estuaries of Mvoti to
Umzimkulu WMA.

Name	Fish Condition	Comments
Sezela	D	Poor water quality, habitat destruction, reduced food availability
Mkumbane	D	Poor water quality, habitat destruction, reduced food availability
uMuziwezinto	D	Poor water quality, habitat destruction, reduced food availability
Nkomba	В	
Mzimayi	D	Flow reduction, poor water quality, habitat destruction, reduced food availability
Mpambanyoni	D	Poor water quality, habitat destruction, reduced food availability
Mahlongwa	С	
Mahlongwane	В	
uMkhomazi	С	
Ngane	D	Poor water quality, habitat destruction, reduced food availability
Umgababa	D	Flow reduction, poor water quality, habitat destruction, reduced food availability
Msimbazi	В	
Lovu	С	
Little aManzimtoti	F	Significant flow increase, poor water quality, habitat destruction, reduced food availability
aManzimtoti	F	Significant flow increase, very poor water quality, severe habitat destruction, reduced food availability
Mbokodweni	F	Significant flow increase, very poor water quality, extreme habitat destruction, reduced food availability
Sipingo	F	Very significant flow reduction, very poor water quality, severe habitat destruction, reduced food availability
Durban Bay	F	Significant flow reduction, poor water quality, severe habitat destruction (port development), reduced food availability
uMngeni	F	Significant flow reduction, very poor water quality, severe habitat destruction, reduced food availability
Mhlanga	Е	Significant flow increase, poor water quality, habitat destruction, reduced food availability
uMdloti	F	Flow increase, poor water quality, habitat destruction, reduced food availability
uThongathi	E	Very poor water quality, severe habitat destruction, reduced food availability
Mhlali	С	
Bob's Stream	В	
Seteni	В	
Mvoti	F	Flow reduction, very poor water quality, habitat destruction (sand mining), reduced food availability
Mdlotane	В	
Nonoti	F	Poor water quality, habitat destruction, reduced food availability, floating and fringing alien vegetation
Zinkwasi	В	Habitat destruction, reduced food availability

11.9 BIRDS

11.9.1 Bird groups

For the purposes of this study, the birds found on the estuary have been grouped into nine groups (Table 10.19). Waders, gulls and terns dominate the avifauna at present, with waterfowl also being common.

Bird groups	Defining features, typical/dominant species	
Piscivorous cormorants	The estuary supports a few species of pursuit swimming piscivores which catch their prey by following it under water and therefore prefer deeper water habitat. These include Reed Cormorant, Cape Cormorant, White-breasted Cormorant and African Darter.	
Piscivorous wading birds	This group comprises the egrets, herons, ibises and spoonbill. Loosely termed piscivores, their diet varies in plasticity, with fish usually dominating, but often also includes other vertebrates, such as frogs, and invertebrates. The ibises were included in this group, though their diet mainly comprises invertebrates and is fairly plastic. They tend to be tolerant of a wide range of salinities. Wading piscivores prefer shallow water up to a certain species dependant wading depth.	
Herbivorous waterfowl	This group is dominated by species that tend to occur in lower salinity or freshwater habitats and are associated with the presence of aquatic plants such as Potamageton and Phragmites. The group includes some of the ducks, and all the rallids (e.g. Redknobbed Coot, African Purple Swamphen). Some herbivorous waterfowl such as Egyptian Goose probably feed in terrestrial areas away from the estuary and floodplain as well as in the estuary.	
Omnivorous waterfowl	This group comprises ducks which eat a mixture of plant material and invertebrate food such as small crustaceans - Yellow-billed Duck, Cape Teal, Red-billed Teal and Cape Shoveller. Although varying in tolerance, these species are fairly tolerant of more saline conditions.	
Benthivorous waders	This group includes all the waders (e.g. Greenshank, Curlew Sandpiper). They are the smallest species on the estuary, and feed on benthic macroinvertebrates in exposed and shallow intertidal areas. Invertebrate-feeding waders forage mainly on exposed sandbanks, mudflats and in the inter-tidal zone. A few resident species occur such as White-fronted Plover and Black-winged Stilt. Many species of Palaearctic migrants have been recorded on the estuary, often in fairly high numbers.	
Piscivorous gulls & terns	This group comprises the rest of the Charadriiformes, and includes all the gull and tern species using the estuary. These species are primarily piscivorous, but also take invertebrates. Most are euryhaline, but certain tern species on the estuary tend to be associated with low salinity environments. Gulls and terns can be very abundant and use the estuary primarily for roosting	
Piscivorous kingfishers	Three species of kingfishers occur on the estuary in low numbers. They breed and perch on the river banks and prefer areas of open water with overhanging vegetation.	
Piscivorous birds of prey	This group includes African Fish Eagle and Osprey. The African Fish Eagle is not confined to a diet of fish, also taking other vertebrates and invertebrates.	
Other birds of prey	The Marsh Harrier has been recorded on the estuary in the past, and feeds on small vertebrates such as mice and frogs.	

Table 11.19Major bird groups found in the Mvoti to Umzimkulu WMA estuaries, and their
defining features (Modified from Van Niekerk *et al* 2013).

11.9.2 Baseline description

A total of 100 birds species occur along the coast line of Mvoti to Umzimkulu WMA, with the majority of these birds found on the estuaries and wetlands in the region (Ryan et al. 1986). The most abundant wader species are curlew sandpipers, little stints and ruffs. Non-waders are mostly greater flamingos and common/Artic terns. Palaeartic migrants account for more than 80% of all waders. Only 16 of the 100 species surveyed had populations amounting to more than 1% of the total number of birds counted (Ryan et al. 1986). The large numbers of marine tern and cattle egrets counted used estuaries and coastal wetlands primarily as roosting sites. For example, at times major tern roosts were found at the mouth of the Mhlali, Mvoti, Lovu, uMngeni, and Durban Bay.

There is great variability in bird numbers and species richness between systems along this coastline. Much of this variability in bird numbers can be explained in terms of estuary size. The correlation between bird numbers and estuary shore length is highly significant (Ryan et al. 1986). Siegried (1981) attributed the depauperate avifauna in many Natal estuaries and lagoons to their small size, lack of inter tidal flats and their disturbed state.

All Mvoti to Umzimkulu WMA estuaries are affected by direct human disturbance to some extent. Direct disturbance by recreation activities is high in many systems, especially in estuaries situated near resorts. This disrupts feeding and causes birds to move elsewhere.

While, direct human disturbance of estuaries strongly affects both the composition and abundance of the avifauna, is often seen as reversible. In contrast, estuary ecosystem degradation (e.g. altered through siltation, pollution, modification of banks) result in more long-lasting changes.

11.9.3 Factors driving waterbird community structure and abundance

Some of the main flow-related factors to be considered in estimating the bird community under reference conditions and the alternative scenarios are listed in Tale 11.20.

	components on bird groupings (modified from van Niekerk <i>et al</i> 2015).									
Factor	Cormorants & wading piscivores	Kingfishers & fish-eagle	Waterfowl	Waders, gulls and terns						
Mouth condition	Indirectly, throu water level and	gh influence on fish	Indirectly, through influence on macrophytes	Mouth closures has negative effect on preferred sandbanks in lower estuary						
Salinity			Certain species of waterfowl prefer lower salinities							
Turbidity	Negatively affects visibility for foraging	Negatively affects visibility for foraging								
Intertidal area				Waders rely mostly on intertidal areas for feeding.						
Sediment characteristics (including				Most waders prefer med to fine sand; a few prefer coarse sand						

Table 11.20Effect of abiotic characteristics and processes, as well as other biotic
components on bird groupings (Modified from Van Niekerk *et al* 2013).

Factor	Cormorants & wading piscivores	Kingfishers & fish-eagle	Waterfowl	Waders, gulls and terns
sedimentation)				
Primary productivity	Indirectly thoug	h influence on food	d supply	
Submerged macrophytes abundance			Has positive influence on herbivorous waterfowl numbers	
Abundance of reeds and sedges			Has positive influence on some herbivorous waterfowl species	
Abundance of zooplankton			Assumed positive for some omnivorous species	
Benthic invertebrate abundance				Primary food source for invertebrate-feeding waders
Fish biomass	Piscivores will in increasing num medium-sized f	bers of small to		

11.9.4 Summary of the bird condition in Mvoti to Umzimkulu WMA

Table 11.21 provide a summary of the condition of the bird component of the estuaries in Mvoti to Umzimkulu WMA.

Name	Bird Condition	Estuary Condition	Recreational activities		
Mtamvuna	В		Jet skis, Boating		
Zolwane	В				
Sandlundlu	D	Habitat destruction, reduced food availability			
Ku-Boboyi	С				
Tongazi	С				
Kandandhlovu	С				
Mpenjati	В				
Umhlangankulu	С				
Kaba	С				
Mbizana	В		Canoes		
Mvutshini	С				
Bilanhlolo	D	Water quality, habitat destruction, reduced food availability	Swimming, angling and boating.		
Uvuzana	D	Water quality, habitat destruction, reduced food availability			
Kongweni	D	Flow modification, water quality, severe habitat destruction, reduced food availability	Paddle-boating		
Vungu	С		Swimming, boating and fishing		
Mhlangeni	С		Boating		
Zotsha	В				

Table 11.21 Summary of the bird component condition.

Name	Bird Condition	Estuary Condition	Recreational activities
Boboyi	С		
Mbango	D	Flow modification, very poor water quality, severe habitat destruction, reduced food availability	
Umzimkulu	В		Jet skis
uMthente	С		Boating
Mhlangamkulu	С		
Damba	С		
Koshwana	С		
Intshambili	С		ski-boat launch site
Mzumbe	E	Water quality, habitat destruction (macrophytes), reduced food availability	
Mhlabatshane	С		Canoeing
Mhlungwa	С		
Mfazazana	С		
Kwa-Makosi	С		
Mnamfu	С		
Mtwalume	D	Poor water quality, habitat destruction, reduced food availability	Ski-boat launching site
Mvuzi	С		
Fafa	D	Poor water quality, severe habitat destruction (macrophytes), reduced food availability	Paddle craft& canoes
Mdesingane	D	Flow reduction, poor water quality, habitat destruction, reduced food availability	
Sezela	D	Poor water quality, habitat destruction, reduced food availability	
Mkumbane	D	Poor water quality, habitat destruction, reduced food availability	Ski boat launch
uMuziwezinto	D	Poor water quality, habitat destruction, reduced food availability	
Nkomba	C		
Mzimayi	C D	Poor water quality, habitat destruction,	Scottburgh ski-boat club,
Mpambanyoni	D	reduced food availability Medium fishing pressure, poor water quality, habitat destruction, reduced food	canoe, paddle craft Canoes
Mahlongwa Mahlongwano	С	availability	Canoes
Mahlongwane uMkhomazi	D	Significant flow reduction, poor water quality, habitat destruction, reduced food availability	Jet skis
Ngane	D	Poor water quality, habitat destruction, reduced food availability	
Umgababa	В		
Msimbazi	В		
Lovu	С		
Little	D	Significant flow increase, poor water quality, habitat destruction, reduced food availability	
aManzimtoti	E	Significant flow increase, very poor	

Name	Bird Condition	Estuary Condition	Recreational activities
		water quality, severe habitat destruction, reduced food availability	
Mbokodweni	F	Significant flow increase, very poor water quality, extreme habitat destruction, reduced food availability	
Sipingo	F	Very significant flow reduction, very poor water quality, severe habitat destruction, reduced food availability	
Durban Bay	F	High fishing pressure, significant flow reduction, poor water quality, severe habitat destruction (Harbour), reduced food availability	
uMngeni	E	Significant flow reduction, very poor water quality, severe habitat destruction, reduced food availability	
Mhlanga	D	Significant flow increase, poor water quality, habitat destruction, reduced food availability	
uMdloti	F	Flow increase, poor water quality, habitat destruction, reduced food availability	
uThongathi	F	Very poor water quality, severe habitat destruction, reduced food availability	
Mhlali	D	Poor water quality, habitat destruction, reduced food availability	
Bob's Stream	C		
Seteni	С	Flow reduction, very poor water quality,	
Mvoti	F	habitat destruction (sand mining), reduced food availability	
Mdlotane	В		
Nonoti	D	Poor water quality, habitat destruction, reduced food availability	
Zinkwasi	D	Poor water quality, habitat destruction, reduced food availability	Jet skis, Boating

12 APPENDIX C: ESTUARY ECOLOGICAL IMPORTANCE

12.1.1 National biodiversity importance

The national Estuary Importance Score (EIS) for an estuary takes size, the rarity of the estuary type within its biographical zone, habitat, biodiversity and functional importance of the estuary into account (DWA 2008). Biodiversity importance, in turn is based on the assessment of the importance of the estuary for plants, invertebrates, fish and birds, using rarity indices. These importance scores ideally refer to the system in its natural condition. The scores have been determined for all South African estuaries, apart from functional importance, which is scored by the specialists during EWR workshops (DWA 2008).

To add resolution to the national estuary importance rating the EIS for the estuaries of Mvoti to Umzimkulu WMA were rated on a 1 (0-20) to 5 (80-100) scale to provide an indication of their biodiversity importance in the region (see Table 12.1 and Table 12.2) (DWA 2008).

Rating	Estuary Importance Score	Level of importance
1	0 - 20	Little
2	20.1 - 40	Some
3	40.1 - 60	Important
4	60.1 - 80	Very important
5	80.1 -100	Extremely important

Table 12.1 Ecological Importance rating.

Table 12.2 Estuary importance scores on a national scale for the Mvoti to Umzimkulu WMA estuaries. The overall importance score (I) is calculated from the size score (S), habitat importance score (H), zonal type rarity score (Z) and the updated biodiversity importance score (B) (DWAF 2008, Turpie and Clark 2007, Turpie et al. 2002).

Estuary	S	Н	z	В	I	National Biodiversity Importance	Formal Protected Area	Planned PA	Conservation Importance
Mtamvuna	80	50	10	83	66.3	4	Pondoland MPA		5
Zolwane	10	20	10	24.5	16.1	1			1
Sandlundlu	30	40	10	55.5	36.9	2			1
Ku-boboyi	10	20	10	37.5	19.4	1			1
Tongazi	10	70	10	63	38.3	2			1
Kandandhlovu	20	20	10	34.5	22.6	2			1
Mpenjati	40	50	10	73.5	47.9	3	Mpenjati NR	NBA '11 Partial	5
Umhlangankulu	40	80	10	49.5	49.4	3			1
Kaba	20	40	10	25	25.3	2			1
Mbizana	40	70	10	80	54.5	3			1
Mvutshini	10	20	10	10	12.5	1			1
Bilanhlolo	20	60	10	76.5	43.1	3			1
Uvuzana	10	20	10	23	15.8	1			1

Estuary	S	н	z	в	I	National Biodiversity Importance	Formal Protected Area	Planned PA	Conservation Importance
Kongweni	10	40	10	48.5	27.1	2			1
Vungu	10	30	10	39	22.3	2			1
Mhlangeni	20	40	10	59	33.8	2			1
Zotsha	30	80	10	55.5	46.9	3		NBA '11 Partial	5
Boboyi	10	40	10	45.5	26.4	2			1
Mbango	10	60	10	31	27.8	2			1
Umzimkulu	80	100	30	76	79	4		NBA '11 Partial	5
uMthente	30	80	10	30.5	40.6	3			1
Mhlangamkulu	30	10	10	17	19.8	1			1
Damba	20	90	10	25	37.8	2		NBA '11 Partial	5
Koshwana	10	80	10	24.5	31.1	2		NBA '11 Partial	5
Intshambili	20	80	10	26	35.5	2		NBA '11 Partial	5
Mzumbe	50	50	10	53.5	46.9	3			1
Mhlabatshane	20	90	10	26.5	38.1	2		NBA '11 Partial	5
Mhlungwa	20	60	10	47.5	35.9	2			1
Mfazazana	20	80	10	57.5	43.4	3		NBA '11 Partial	5
Kwa-Makosi	20	90	10	39.5	41.4	3		NBA '11 Partial	5
Mnamfu	10	80	10	10	27.5	2			1
Mtwalume	60	50	10	64	53.5	3			1
Mvuzi	10	50	10	29.5	24.9	2			1
Fafa	70	80	10	63	64.8	4			1
Mdesingane	10	30	10	29.5	19.9	1			1
Sezela	40	50	10	76.5	48.6	3			1
Mkumbane	10	40	10	50.5	27.6	2			1
uMuziwezinto	30	80	10	64	49	3			1
Nkomba						1			1
Mzimayi	10	40	10	24.5	21.1	2			1
Mpambanyoni	20	50	10	49	33.8	2			1
Mahlongwa	30	40	10	44	34	2		KZN	5
Mahlongwana	30	80	10	48	45	3		KZN	5
uMkhomazi	80	60	30	91.5	72.9	4		NBA '11 Partial	5
Ngane	10	40	10	67	31.8	2			1
Umgababa	50	60	10	63	51.8	3		NBA '11 Full	5
Msimbazi	50	50	10	84.5	54.6	3		NBA '11 Full	5

Estuary	S	Н	z	В	I	National Biodiversity Importance	Formal Protected Area	Planned PA	Conservation Importance
Lovu	40	80	10	78	56.5	3		NBA '11 Partial	5
Little aManzimtoti	10	80	10	37.5	34.4	2			1
aManzimtoti	30	70	10	84	51.5	3			1
Mbokodweni	30	40	10	72	41	3			1
Sipingo	30	100	10	63.5	53.9	3			1
Durban Bay	90	100	80	92.5	92.1	5		NBA '11 Partial	5
uMngeni	70	90	10	86.5	73.1	4	Beechwood NR	NBA '11 Partial	5
Mhlanga	80	70	10	79	70.3	4	EKZNW	NBA '11 Full	5
uMdloti	80	90	10	69	72.8	4			1
uThongathi	70	80	10	54.5	62.6	4			1
Mhlali	60	90	10	80	67.5	4		NBA '11 Partial	5
Bob' Stream						1			1
Seteni	10	80	10	37.5	34.4	2			1
Mvoti	60	30	70	80.5	58.6	3		NBA '11 Full	5
Mdlotane	60	90	10	65	63.8	4		NBA '11 Full	5
Nonoti	60	60	10	74.5	58.6	3			1
Zinkwasi	80	90	10	80	75.5	4		NBA '11 Partial	5

12.1.2 Regional biodiversity Importance

The biodiversity importance of the Mvoti to Umzimkulu WMA estuaries were also evaluated on a regional scale, based on available regional scale plant, fish and bird data. This was done to address gaps in the national database and to facilitate a regional perspective.

12.1.2.1 Macrophytes

Both **uMngeni** and **Durban**Bay estuaries are important in terms of macrophytes as they support mangrove communities as well as intertidal salt marsh and submerged macrophytes, exclusively. Mtamvuna, Umzimkulu, Mhlangamkulu and uMkhomazi are important in terms of habitat and floodplain size.. Submerged macrophytes are sensitive to flooding and high sediment loads which result in removal and die-back. The data in Table 12.3 and Tale 12.7.are based on historical records and will need to be checked with field surveys to confirm whether these habitats are currently present in the identified estuaries.

Estuary	Туре	Area of mangroves	Total estuarine area	% of total estuarine area
uMngeni	Temporarily closed	20.3	83.3	24.37
Durban Bay	Estuarine bay	16	1148	1.39
Sipingo	Modified permanently open	3.8	26.6	14.29
uMkhomazi	Permanently open	2	74.7	2.68
Mtamvuna	Temporarily closed	0.3	63.58	0.47

Estuary	Туре	Area of present submerged macrophytes		% of total estuarine area
Durban Bay	Estuarine bay	8	1148	0.70
Mahlongwana	Temporarily closed	3	20.84	14.40
Umgababa	Temporarily closed	2.5	47.3	5.29
Nonoti	Temporarily closed	2.5	27	9.26
Mhlungwa	Temporarily closed	1.5	16.5	9.09
Fafa	Temporarily closed	1.5	51	2.94
Mdlotane	Temporarily closed	0.71	25.42	2.79
Mdesingane	Temporarily closed	0.5	7.14	7.00
Kaba	Temporarily closed	0.25	14.65	1.71

Only the uMngeni Estuary supports intertidal saltmarsh communities of 2 ha, comprising 2.4 % of the 83.3 ha of estuarine vegetation contained within the system.

Table 12.5 Est	uaries in the Mvoti-Umzimkulu	WMA that contain su	pratidal saltmarsh.

Estuary	Туре	Area of submerged macrophytes	Total estuarine area	% of total estuarine area
Sipingo	Modified permanently open	3	26.6	11.28
Mzimayi	Temporarily closed	0.07	0.89	19.10

Only five estuaries in the Mvoti to Umzimkulu WMA do not contain reeds and sedges, namely: Zolwane, Tongazi, Mvutshini, Vungu, Nkomba.

Table 12.6 Estuaries in the Mvoti-Umzimkulu WMA that that support the 10 largest reed andsedges habitat.

Estuary	Туре	Area of reeds and sedges	Total estuarine area	% of total estuarine area
Mhlangamkulu	Temporarily closed	69.9	100.1	69.83
Zinkwasi	Temporarily closed	39.51	71.16	55.52
Lovu	Temporarily closed	19	39.5	48.10
Umzimkulu	Permanently open	18	117.9	15.27
Sezela	Temporarily closed	18	28	64.29
uThongathi	Temporarily closed	17.2	37.3	46.11
Mpenjati	Temporarily closed	15	33.1	51.36
Mtamvuna	Temporarily closed	15	63.58	23.95
Umgababa	Temporarily closed	14	47.3	31.71

Estuary	Туре	Area of reeds and sedges	Total estuarine area	% of total estuarine area
Mvuzi	Temporarily closed	12	17.8	84.27

Table 12.7	Estuaries in the	Mvoti-Umzimkulu	WMA that cont	ain Swamp forest.

Estuary	Туре	Area of swamp forest	Total estuarine area	% of total estuarine area
Sipingo	Modified permanently open	16	26.6	60.15
Umzimkulu	Permanently open	15	117.9	12.72
Mdlotane	Temporarily closed	12.33	25.42	48.51
Mhlabatshane	Temporarily closed	11.5	19.27	59.68
Zinkwasi	Temporarily closed	11.28	71.16	15.85
Damba	Temporarily closed	9	19.65	45.80
uMdloti	Temporarily closed	7.8	58.1	13.43
Mhlali	Temporarily closed	7	42	16.67
Kwa-Makosi	Temporarily closed	7	14.95	46.82
Intshambili	Temporarily closed	6.25	10.45	59.81

12.1.2.2 Invertebrates

The Mvoti to Umzimkulu WMA estuaries were not ranked for in their importance to invertebrates as no large regional scale assessment have been completed for this component. Important estuaries have been however subsumed as they form part of the National Estuary Biodiversity Plan through expert opinion and are therefore highlighted as important in the preceding sections.

12.1.2.3 Fish

To provide a regional perspective on the importance of the Mvoti to Umzimkulu WMA estuaries for fish the Fish Importance Rating developed by Maree et al 2003 was adjusted for new information and then normalised on a 1 to 5 ranking (Table 12.8).

This assessment showed that 10 estuaries in the region were of high importance to fish, with Durban Bay being the most important even though it is severely transformed.

12.1.2.4 Birds

To provide a regional perspective on the importance of the Mvoti to Umzimkulu WMA estuaries for birds the findings of Ryan et al (1986) were adjusted for new information and then normalised on a 1 to 5 ranking (Table 12.9).

This assessment showed that 23 estuaries in the region were of relative importance to birds, with two – Mbokodweni and Mpambanyoni estuaries - being removed from the original list due to a significant decline in estuary health or importance.

Table 12.8 Relative importance of the estuaries of Mvoti to Umzimkulu WMA for fish (rating1 - 5 represents lowest - highest importance).

Estuary	Fish Importance Rating
Durban Bay	5
Mtamvuna	4
Fafa	4
uMkhomazi	4
Umgababa	4
uMngeni	4
Mhlanga	4
uMdloti	4
Mhlali	4
Mdlotane	4
Zolwane	3
Sandlundlu	3
Tongazi	3
Kandandhlovu	3
Mpenjati	3
Umhlangankulu	3
Kaba	3
Mbizana	3
Mvutshini	3
Bilanhlolo	3
Uvuzana	3
Kongweni	3
Vungu	3
Mhlangeni	3
Zotsha	3
Boboyi	3
Mbango	3
Umzimkulu	3
uMthente	3
Mhlangamkulu	3
Damba	3
Koshwana	3
Intshambili	3
Mzumbe	3
Mhlabatshane	3

Estuary	Fish Importance Rating
Mhlungwa	3
Mfazazana	3
Kwa-Makosi	3
Mnamfu	3
Mtwalume	3
Mvuzi	3
Mdesingane	3
Sezela	3
Mkumbane	3
uMuziwezinto	3
Mzimayi	3
Mpambanyoni	3
Mahlongwa	3
Mahlongwana	3
Ngane	3
Msimbazi	3
Lovu	3
Little aManzimtoti	3
aManzimtoti	3
Mbokodweni	3
Sipingo	3
uThongathi	3
Seteni	3
Mvoti	3
Nonoti	3
Zinkwasi	3
Ku-boboyi	2
Nkomba	1
Bob' Stream	1

Estuary	Bird Importance ranking
Durban Bay	5
uMngeni	4
Mvoti	3
Mhlali	3
uMkhomazi	3
Zinkwasi	2
uMdloti	2
Mhlanga	2
uThongathi	2
Msimbazi	2
Mbizana	2
Mtamvuna	2
Mzumbe	1
Intshambili	1
Fafa	1
Mtwalume	1
Sezela	1
Mdlotane	1
Sipingo	1
Lovu	1
aManzimtoti	1
Umzimkulu	1
Mpenjati	1

Table 12.9 Relative importance of the estuaries of Mvoti to Umzimkulu WMA for birds.

13 APPENDIX D: REPORT COMMENTS

PAGE &/ OR SECTION	REPORT STATEMENT	COMMENTS	CHANGES MADE TO REPORT	AUTHOR COMMENT
25 September 2013: Co	mments from Tovho I	Nyamande		
		DWA logo on the first page.	Done	
		Check numbering flow from section 2.	Done	
Page i		Is the Forbes involved?	n/a	They are involved in the field work and higher level EWR studies. They were not available for the Desktop study.
Page ii second paragraph, 3 rd sentence		write Water Quality in full.	Done	
Page ii second paragraph, 5 th sentence		"waterquality" – space.	Done	
Page iii Table 1		Include a table with the explanation of EC A-D and colour coding.	Done	
Page xiv paragraph 2		spelling mistake "testuary-assessments".	Done	
Section 1: Page 5, sub-section 1.4		"In this study, effort lay somewhere between a rapid and intermediate study" – Why not up to Comprehensive?	Done	Included "very limited historical field data were available that would allow for the correlation between river inflow, mouth state and water quality parameters"
Section 2: Page 1, paragraph 1, 3 rd sentence		spelling mistakes "delineation for".	Done	
4 th paragraph, last sentence		spelling mistakes: systems, truthing.	Done	
Section 3: bottom of page 11		duplication of "in".	Done	

PAGE &/ OR SECTION	REPORT STATEMENT	COMMENTS	CHANGES MADE TO REPORT	AUTHOR COMMENT
		Change Estuary names to Gazetted names.	Done	
25 September 2013: Co	mments from Mmaph	efo Thwala	·	·
		Change estuary names to reflect government Gazette notice, but not maps to reflect DWA database.	Done	
		Page for signatures: remove "and Forestry" on the DWA name.	Done	
		The Use of Mzimkhulu on the Title and throughout the document instead of UUmzimkulu	Done	Instructed to use Umzimkulu
page ii		EHI Score full name should be provided on page ii since this is the first mention.	Done	
page 1 paragraph 4, last sentence		Systems	Done	
page 6 paragraph 2 under section 3.3.1		should read "data was sourced"	Done	
page 7 paragraph 2 under section 3.3.4		should read "South African"	Done	
page 36 section 3.9.1 second sentence		correct the word "and"	Done	
page 52 section 3.12 second paragraph, last sentence		water quality is written an one word	Done	
page 62 section 4.2.2.2 last sentence		therefore highlighted "	Done	
bage 64 section 4.2.2.4		"the findings of Ryan et al are ", second paragraph, use same size dashes.	Done	
Page 68 paragraph 2		second sentence – the word "category" is missing	Done	Changed to importance
Page 68 paragraph 5		Remember to insert the Figure number and	Done	

PAGE &/ OR SECTION	REPORT STATEMENT	COMMENTS	CHANGES MADE TO REPORT	AUTHOR COMMENT
		the Chapter number later		
page 57		Estuary Importance section is repeated exactly as in the Executive Summary (page v), summarise for the Executive summary.	Done	
25 September 2013: Co	omments from Bill Pfafi	(eThekwini Municipality)		
		There are a couple of text errors i) - page ix , below table 8. Viz : All the estuaries listed in table 7 (should read table 5)) should be prioritised ii) ref on page x to Table 8.1. This table as included in the Summary is shown as table 10.	Done	
		2. The comment is provided in detail below the table. The major issue is regarding the lack of sufficient water level recorders and/or flow gauging structures that do not allow for higher confidence estuary EWRs to be undertaken.	n/a	General comment, not action pertaining to report necessary.
		 3. This is a general statement which links to two above. The comment is provided in detail below the table. One statement made is incorrect however: the Ecological Reserves have only considered the ecological water (volume) requirements and have not considered water quality 	n/a	EWR assessment consider water quality in terms of habitat requirements for biota in all cases
		4. An input to determine the 'hotspot' is the 'water resource use importance' scoring which combines scores for "use", "operational", "future development" and "water quality" (Table 6.2 in the main report). It is not clear what factors are taken into the respective scoring of these 4 factors but it is clear that the overall "water use importance " does not adequately take into account the use of the	No	Summarised from a range of reports and available on data CD.

PAGE &/ OR SECTION	REPORT STATEMENT	COMMENTS	CHANGES MADE TO REPORT	AUTHOR COMMENT
		water resource to accommodate the ultimate disposal of wastewater.		
Table 5		5. The report identifies "priority areas with overall importance" as so-called 'hotspots'. The Mbokodweni and Little Manzimtoti are excluded from this list. Of the 16 eThekwini estuaries it has been identified previously that only 8 are impacted in any way by "ultimate wastewater flows". Of this 8 the Durban Bay and Isipingo are in a very poor condition as a result of structure related issues and with the Mbokodweni and Little Manzimtoti identified in this report as having no "overall importance ," it is suggested that the focus of the (proposed) eThekwini study should be on the four remaining eThekwini estuaries (Mgeni , Mhlhanga , Mhloti and Tongati) . We would welcome having this discussion with the DWA project / study team.		Hotspots identified based on their ecological/social importance, PES and current/future level of resource use. Mbokodweni and Little Manzimtoti of average ecological importance therefore not keyed out as a hotspot.
Table 8.1 (Table 10 in the Summary)		6. Includes comments under 'aspects that need targeting for restoration / rehabilitation to occur. These comments need to be checked for consistency . Viz Mgeni , which needs additional flow , is noted as "significant flow reduction' , whereas Mdloti , which also needs additional flow, is noted as " flow increase ".	Done	Agree, will address.
		7. It is not clear why the Umgababa estuary has been identified for EWR study when there is little development – no significant flow related pressures - and no wastewater impacts planned. Table 8.1 refers to "flow reduction "?		Umgababa Estuary keyed out as a result of Biodiversity importance (5) and Ecosystem services (4) in combination with PES = C. Not driven by a flow issue as indicated by 3 rating.
		8. The final recommendation in the report is that general and special standards be	No	Current discharge values exceed the carrying capacity of the estuaries

PAGE &/ OR SECTION	REPORT STATEMENT	COMMENTS	CHANGES MADE TO REPORT	AUTHOR COMMENT
		replaced by the "application of receiving water quality standards". As the "classification" will provide the quantity and quality of water this raises the question as to how these standards will be determined for each estuary when the data required to assess these standards AT THE REQUIRED LEVEL OF CONFIDENCE does not exist and there are no ongoing efforts to collect additional data.		significantly in a number of key systems. As indicated before, while target ranges can be provide for cost estimate purposes, refining these estimates will require numerical modelling on a case-by- case basis. This is not part of the scope of an EWR study, but rather the domain of an EIA evaluation.
Tables 2 , 3 and 4		9. For completeness the report needs to note that the Minimum EC are NOT a legal requirement, but rather have the status of policy guidelines and can be reduced under certain circumstances.	n/a	The report does not imply that it is a legal requirement. The report states that it is following the EWR methods for estuaries. Note reference is DWAF 2008 not National Water Act. This is the ecological assesment. Any trade-off/deviation from EWR methods rule will need to be done in subsequent integration /classification reports.

Notwithstanding the above, which are easily corrected, the ongoing concern around this part of the study is the quality of the data which is being used to make decisions which will have the potential for significant impacts for eThekwini and the study area in general.

This concern was raised at the commencement of the study and little, if anything, seems to have been initiated in the way of any monitoring programmes which might have provided supporting information.

This report - refer Note on page x for example – reinforces this concern. Not only are the existing studies which have been quoted dependent upon low confidence hydrology (and hence low confidence (i.e. <40% confidence) predicted abiotic states) but there is no added data from any recent monitoring programmes, notwithstanding that the need for continuous monitoring has been a recommendation of every estuarine ecological reserve conducted in the area and various subsequent undertakings by DWA that monitoring would be given priority.

As such, and as notified at the commencement of our involvement in this study, eThekwini will not be able to make decisions based on the outcomes of the study with any degree of certainty unless the analysis by the specialists throughout all facets of the study is based on data with which the specialists are able to use with the required degree of confidence.

Given the potential impact of the project on the means for the disposal of treated wastewater and the potential cost implications to Municipalities in possible 'mitigation' measures, this report cannot be supported whilst the specialists record that data which they rely on "cannot be resolved with any

PAGE &/ OR SECTION	REPORT STATEMENT	COMMENTS	CHANGES MADE TO REPORT	AUTHOR COMMENT
degree of confidence".				
The manner in which th uMzimkulu Water Manag		icted continues to be in conflict with the aim	of producing a	"comprehensive" reserve for the Mvoti to
areas are in need of deta - continuous monitoring w - confidence in the hydro - the Ecological Reserves - none of the existing res eThekwini to the 'visionin - none of the 'non-flow' re	ailed monitoring. Hence I was a specific recommen logy in each of the studi s have only considered t erves have considered t ng' process) although fut elated recommendations R (part of the study team	ing relied upon as a strategic tool to guide the con- Mgeni , Mhlanga , Mhloti and Tongati are exclue Indation in each of the detailed studies and has y es is low , which leads to low confidence predic the ecological water (volume) requirements and the discharge of treated wastewater at the volum ure water-resource development is stated as be s made in any of the reports have been followed () have recommended that the Mhlanga E R be	ded notwithstand yet to commence ted abiotic state d have not consid mes resulting fro eing the driver fo d up by DWA e revisited as the	ding that e s dered water quality m the SDF (refer to the input from or the selection of a "focus area." approved procedures for EWR studies